
Real-Time Resource Allocation for Tracking Systems

Yash Satsangi
University of Amsterdam

Shimon Whiteson
University of Oxford

Frans A. Oliehoek
University of Liverpool

University of Amsterdam

Henri Bouma
TNO, The Netherlands

Abstract

Automated tracking is key to many computer
vision applications. However, many tracking
systems struggle to perform in real-time due to
the high computational cost of detecting peo-
ple, especially in ultra high resolution images.
We propose a new algorithm called PartiMax
that greatly reduces this cost by applying the
person detector only to the relevant parts of
the image. PartiMax exploits information in
the particle filter to select k of the n candidate
pixel boxes in the image. We prove that Parti-
Max is guaranteed to make a near-optimal se-
lection with error bounds that are independent
of the problem size. Furthermore, empirical re-
sults on a real-life dataset show that our system
runs in real-time by processing only 10% of
the pixel boxes in the image while still retain-
ing 80% of the original tracking performance
achieved when processing all pixel boxes.

1 INTRODUCTION

Automated tracking is a key component of count-
less computer vision applications such as maintaining
surveillance, studying traffic flows, and counting the
number of people in a scene [Smeulders et al., 2014].
Consequently, in recent years many tracking systems
have been proposed that make it possible to track peo-
ple in a variety of challenging settings [La Cascia et al.,
2000; Benfold and Reid, 2011; Smeulders et al., 2014].
However, these approaches still cannot perform real-time
tracking on ultra high resolution videos (e.g., 5000 ×
4000 pixels).

In particular, the detection stage, i.e., identifying an ob-
ject in a scene, is the main computational bottleneck for
systems that work on the tracking-by-detection principle

Pixel box

Figure 1: A wide-view scene recorded by a rooftop cam-
era; the cyan rectangle shows an example pixel box.

[Benfold and Reid, 2011]. For example, Figure 1 shows
a wide-view scene recorded by a camera mounted on top
of a building [Schutte et al., 2016]. Successful tracking
depends on detecting the person in the image by applying
a trained detector to many pixel boxes. Since the scene
records a wide landscape, the pixel boxes must be rel-
atively small (e.g., 180 × 180), yielding approximately
7000 pixel boxes per image. Consequently, performing a
brute force detection (BD) that applies the person detec-
tor to all 7000 pixel boxes is extremely computationally
intensive and prohibitive to do in real time.

In this paper, we propose a new tracking system that
greatly reduces the cost of detection and thus enables
real-time tracking on systems with ultra high resolution
images or many cameras. The main idea is to perform
selective detection (SD), i.e., apply the person detec-
tor not on all n pixel boxes, but only a carefully se-
lected subset of k pixel boxes, while retaining perfor-
mance guarantees, as shown in Figure 2. To do so, we
build on existing techniques for sensor selection, which

Figure 2: Proposed tracking system with PartiMax, our
proposed selective detection method, highlighted in red.

select the k out of n sensors with the highest utility in
a multi-sensor network. Sensor selection is challeng-
ing because there are

(
n
k

)
ways to perform the selec-

tion, and computing the best one would use up the same
scarce computational resources we aim to intelligently
allocate. Fortunately, when the utility function possesses
certain characteristics, including submodularity, a near-
optimal selection can be found using greedy maximiza-
tion, which evaluates the utility function onlyO(nk), in-
stead of

(
n
k

)
, times. In addition, stochastic greedy maxi-

mization [Mirzasoleiman et al., 2015] further reduces the
number of evaluations of the utility function by evaluat-
ing the utility function only for a random subset of pixel
boxes of size r, where r << n.

However, for selective detection in real-time, even
stochastic greedy maximization is too expensive because
computing typical utility functions such as information
gain or expected coverage requires marginalizing out the
observation that each candidate sensor would generate.
In fact, in real-life settings with high dimensional state
and/or observation spaces, evaluating information gain
or expected coverage even once can be prohibitively ex-
pensive.

We start by proposing a utility function for selective de-
tection called particle coverage that approximates the
probability of detecting a person in a given set of pixel
boxes. We show that particle coverage approximates ex-
pected coverage under certain conditions, but is much
faster to compute. Then, we propose PartiMax. Un-
like (stochastic) greedy maximization, which treats util-
ity evaluation as a black-box, PartiMax maintains and
updates the particle coverage of each pixel box in ev-
ery iteration of greedy maximization, leading to large
computational savings, as the particle coverage of each
pixel box is not evaluated from scratch in each iteration.
Furthermore, instead of selecting a subset of pixel boxes
randomly in every iteration like stochastic greedy maxi-

mization, PartiMax samples pixel boxes with high parti-
cle coverage leading to superior tracking performance.

Since sampling pixel boxes with high particle coverage
without computing the particle coverage is not trivial, we
propose a sampling algorithm that is guaranteed to sam-
ple a pixel box with probability directly proportional to
its particle coverage. It does so by employing tile cod-
ing, a popular representation in reinforcement learning
that discretizes continuous spaces.

We show that, given access to a sampling algorithm like
the one we propose, PartiMax is guaranteed to return a
solution with tight error bounds that are independent of
the problem size, i.e., independent of both n and k. Al-
though PartiMax is designed for the particle coverage
function, our bound applies generally to maximization
over a set function.

Finally, we use PartiMax for selective detection to build
a real-time tracking system, which we apply to a real-life
dataset. Our results show that our tracking system retains
80% of its performance despite processing only 10% of
each image and running in real time.

2 RELATED WORK

Most detection systems, e.g., [Felzenszwalb et al., 2010;
Dollár et al., 2014], including those based on convolu-
tional neural networks [Tian et al., 2015; Redmon et al.,
2016], process the whole image and are thus not compu-
tationally efficient enough for our setting, due to the high
resolution and depth of scene of the images.

Some work does identify the relevant region of interest
in an image [Kim et al., 2012], e.g., by generating pro-
posals (see [Hosang et al., 2015] and references therein)
or saliency points [Shtrom et al., 2013]. These meth-
ods, however, are based on the properties (or low-level
features) of the entire image (since they do not consider
the belief state) and often generate thousands of propos-
als/saliency points per image. In fact, selective detection
can be coupled with these methods to selectively gener-
ate saliency points.

Recently developed models of visual attention [Mnih
et al., 2014; Denil et al., 2012] come closest to our work
in spirit. However, they use model-free deep reinforce-
ment learning methods to identify relevant region to ap-
ply a trained detector on [Mnih et al., 2014], while we
learn the model of the world from the data and use it to
plan online to find the relevant regions to which to apply
a trained detector.

Our work builds off the vast existing sensor selection lit-
erature. Most work uses utility functions involving in-
formation gain [Tham and Han, 2013; Wang et al., 2005;

Satsangi et al., 2016] and expected coverage [Spaan and
Lima, 2009], which are too expensive for real-time sys-
tems. Other approaches do not consider partial observ-
ability [Natarajan et al., 2012] or do not scale to large
state and observation spaces [Natarajan et al., 2012; Sat-
sangi et al., 2015]. Methods based on dynamic pro-
gramming [Williams et al., 2007] or linear programming
[Williams et al., 2006] or focusing on occlusions [Gupta
et al., 2007] are also limited to smaller state and obser-
vation spaces.

For submodular function maximization, the most related
methods are those of [Mirzasoleiman et al., 2015] and
[Badanidiyuru and Vondrák, 2014]. We significantly im-
prove upon these methods for sensor selection by intro-
ducing a novel method with lower computational cost
and thereby making them applicable to real-time track-
ing.

3 BACKGROUND

3.1 BASIC SETUP

Let X = {1, 2 . . . n} denote the set of all pixel boxes and
i denote a single pixel box in X . A+ denotes the set of
all possible subsets of X of size less than or equal to k,
A+ = {A ⊆ X : |A| ≤ k}. For the image shown in Fig-
ure 1 the size of one pixel box was chosen to be 180 x 180
pixels. The true location of the person is a hidden vari-
able denoted by s and S is the set of all possible values
s can take.1 The observation vector z = 〈z1, z2 . . . zn〉
denotes the result of applying the detector to each pixel
box, i.e., each zi denotes an estimate of whether a person
appears in the pixel box i. If a pixel box i is not selected
for detection, then zi = ∅. Ω is the set of all possible
values z can take. The belief b(s) is a probability distri-
bution over s. Given A and z, b(s) can be updated using
Bayes rule.

When there are many possible states, it is not possible to
maintain b(s) exactly. Thus, we use particle filters, de-
scribed below, to maintain and update belief b(s). Below
we also describe greedy maximization, which is essen-
tial to our setup, as it selects k pixel boxes out of n in
O(n× k) time instead of O

(
n
k

)
.

3.2 PARTICLE FILTERS

When there are many possible states, it is infeasible to
update b(s) exactly. Instead, we can use particle fil-
ters [Doucet et al., 2001], sequential Monte Carlo al-

1For simplicity, we sometimes assume there is only one per-
son in the scene and the hidden variable is a vector in the Eu-
clidean space. However, our methods and theoretical results
extend easily to multiple people, as shown in Section 7.

gorithms for approximate inference in partially observ-
able scenarios that are commonly used to track people
in complex situations. The true belief b(s) is approxi-
mated with a particle belief B, a collection ofm samples
from b(s), called particles: B = {s1, s2 . . . sm}. Al-
though weighted particle filters are often used for track-
ing, we use an unweighted particle filter since it can be
efficiently implemented with a black-box simulator with-
out the need to explicitly model the accuracy of the per-
son detector or the motion dynamics.

Given the particle belief B, a subset of sensors A and
observation z, particle beliefs can be updated using a
Monte Carlo belief update [Silver and Veness, 2010].
For each particle sl ∈ B, the next state s′l is sampled
from Pr(s′|s) (under the Markov assumption) to form
B′ : {s′l : s′l ∼ Pr(s′l|sl) ∧ sl ∈ B}. With enough
samples, B′ approximates the probability distribution:
b′(s′) =

∑
s∈S Pr(s′|s)b(s).

For each s′l ∈ B′, the corresponding zl is drawn from
Pr(z|s′l,A). If zl = z, then s′l is added to the updated
belief BAz . Otherwise, the particle is discarded. To avoid
particle degeneracy, a common problem with particle fil-
ters, we combine the belief update with new particles in-
troduced by adding random particles sampled from S to
the existing particle set. BAz approximates the probability
distribution bAz (s′) = Pr(z|A,s′)b′(s′)

Pr(z|b,A) .

3.3 GREEDY MAXIMIZATION

Given a set functionF (A), whereA ∈ A+, greedy maxi-
mization computesAG, which approximately maximizes
F by building a subset of k pixel boxes iteratively. In par-
ticular, in each of its k iterations, greedy maximization
adds to a partial solution the pixel box that maximizes
the marginal gain:

∆F (i|A) = F (A ∪ i)− F (A), (1)

of adding i toA, i.e., it adds arg maxi∈X\AG ∆F (i|AG)

to AG as shown in Algorithm 1.

Algorithm 1 greedyMax(F,X , k)

1: AG ← ∅
2: for l = 1 to k do
3: AG ← AG ∪ arg maxi∈X\AG ∆F (i|AG)
4: end for
5: return AG

Nemhauser et al. [1978] showed that greedy maximiza-
tion is guaranteed to have bounded error under certain
conditions:

Theorem 1. [Nemhauser et al., 1978] If F is non-
negative, monotone and submodular, then F (AG) ≥

(1− e−1)F (A∗), where A∗ = arg maxA∈A+ F (A).

Submodularity is a property of set functions that formal-
izes the notion of diminishing returns: F : 2X → R
is submodular if for every AM ⊆ AN ⊆ X and i ∈
X \ AN ,

∆F (i|AM) ≥ ∆F (i|AN). (2)

Thus, the marginal gain of adding an element to a smaller
set AM is always greater than or equal to the marginal
gain of adding the same element to a bigger subset AN
such that AM ⊆ AN ⊆ X . If this is true for all possible
values of AN ,AM , and i, then F is submodular.

3.4 STOCHASTIC GREEDY MAXIMIZATION

Stochastic greedy maximization, shown in Algorithm 2,
further reduces costs by randomly sampling a subset R
of size r fromX in each iteration of greedy maximization
and then selecting the element from R that maximizes
the marginal gain. It computes a subset AS by adding
in each iteration arg maxi∈R∆F (i|AS), where R is a
subset of X \ AS of size r. Mirzasoleiman et al. [2015]
showed that stochastic greedy maximization is also guar-
anteed to have bounded error.

Algorithm 2 stochastic-greedy-max(F,X , k, r)
1: AS ← ∅
2: for m = 1 to k do
3: R ← random sample of size r from X \ AS .
4: AS ← AS ∪ arg maxi∈R∆F (i|AS)
5: end for
6: return AS

Theorem 2. [Mirzasoleiman et al., 2015] If F is non-
negative, monotone and submodular, then E[F (AS)] ≥
(1− e−1 − ε)F (A∗), where r = n

k log(1
ε).

3.5 UTILITY FUNCTIONS

For tracking tasks, F is often defined as information gain
[Cover and Thomas, 1991; Krause and Guestrin, 2005;
Tham and Han, 2013]:

IGb(A) = Hb(s)−HAb (s|z), (3)

where Hb(s) is the entropy of s and HAb (s|z) is the con-
ditional entropy of s given z [Cover and Thomas, 1991].

It can also be defined as expected coverage [Spaan and
Lima, 2009]. Let IjB′ be the set of particles in B′ that are
covered by pixel box j, IjB′ = {s′ ∈ B′ : j covers s′}.
A pixel box j covers s′ if a person in state s′ is visible in

Figure 3: Particle belief: the yellow rectangle shows a
pixel box and the particles it covers.

pixel box j. The expected coverage is defined as:

FB′(A) =
∑
z

Pr(z|B′,A)fBAz (A), (4)

where fB(A) = | ∪j∈A IjB|. Expected coverage belongs
to a general class of coverage functions that have been
widely considered [Spaan and Lima, 2009]. In tracking,
expected coverage is suitable because of the presence of
partial observability, necessitating the expectation across
z. Expected coverage is appropriate for sensor selection
or selective detection because it rewards selecting pixel
boxes that have the highest probability of detecting a tar-
get. The underlying assumption is that the observations
generated by the person detector are informative enough
to detect a person correctly when present inside the pixel
box, and are not informative enough if a person is absent
from the pixel box. This is barely a restrictive assump-
tion, as most useful person detectors satisfy it.

4 PARTICLE COVERAGE UTILITY
FUNCTION

The utility functions described above are too expensive
to compute in many practical settings, as they require
marginalizing out observations, which is infeasible for
real-time systems. In this section, we propose the par-
ticle coverage function (PCF) for selective detection,
which does not require computing BAz and approximates
expected coverage. PCF is defined as follows:

PCFB′(A) = fB′(A) = | ∪j∈A IjB′ |. (5)

PCFB′(A) is simply the number of particles in B′ that
are covered byA. In Figure 3, the particle coverage is the
number of cyan particles that fall in the yellow pixel box.
As opposed to expected coverage FB′ , PCF does not in-
volve an expectation over z nor does it require computing

the resulting beliefs BAz . PCF equals expected coverage
under certain conditions, including the following.

Assumption 1. For every s′ ∈ S, A ⊆ X , there ex-
ist zs′,A and z̄s′,A in Ω such that if s′ is covered by A,
Pr(zs′,A|s′,A) = 1 and if s′ is not covered by A, then
Pr(z̄s′,A|s′,A) = 1.

This assumption implies that any partial observability is
due to perceptual aliasing, not noise in the sensors. Given
Assumption 1, it is straightforward to show that expected
coverage is equal to the particle coverage.

Theorem 3. If Assumption 1 holds for a given A, then
FB′(A) = PCFB′(A).

Proof. Expected coverage can be expressed as
FB′(A) =

∑
z∈Ω Pr(z|B′,A)fBAz (A). In case a

negative detection is observed, that is the person is
not in the space covered by A the resulting belief will
not have any particle within the space covered by A
due to Assumption 1 and thus resulting coverage is
zero. If a positive detection is observed, that is the
person is inside the space covered by A then all the
particles in resulting belief will fall within the space
that is covered by A resulting: fBAz (A) = m. This
implies, FB′(A) =

∑
z∈Ω Pr(z|B′,A)m, where z

is a positive observation that can be obtained only if
a state is covered by A. The probability of getting
a positive detection according to B′ is the sum of
particles covered by A in B′ divided by m. Thus,
FB′(A) = PCFB′ (A)

m ×m = PCFB′(A).

In cases where Assumption 1 does not hold, particle cov-
erage can be considered an approximation to expected
coverage. Its key advantage is that computing fB′ does
not require hypothetical belief updates, as one can iter-
ate over the particle belief and simply count the num-
ber of particles that are covered by A, making it prac-
tical for real-time applications. Moreover, it is a mem-
ber of a class of coverage functions that are known to be
submodular [Krause and Golovin, 2014; Takamura and
Okumura, 2009] so we can employ greedy maximization
to approximately maximize fB′ . Our experiments show
that fB′ is a good choice of utility function for selective
detection in real time, leading to excellent tracking per-
formance at a fraction of the computational cost.

Note that we formulate Assumption 1 merely for analy-
sis purposes: to describe a set of cases in which particle
coverage and expected coverage are identical. Assump-
tion 1 is not a restrictive condition for applying PartiMax,
described below. On the contrary, in the Experiments
section we present excellent results for PartiMax on a
real-life dataset for which Assumption 1 does not hold.

Furthermore, while we define particle coverage for the
case of an unweighted particle filter, the concept is more
general. In essence, the particle coverage of a pixel
box is the cumulative probability mass concentrated on
the states that are covered by the pixel box. Thus, any
method that approximates a belief can be used to com-
pute particle coverage by simply computing the proba-
bility mass concentrated on a set of states. For example,
for a weighted particle filter, the particle coverage of a
pixel box is just the sum of the weights of the particles
covered by the pixel box.

5 PARTIMAX

In this section, we propose PartiMax, which com-
bines the complementary benefits of PCF and stochastic
greedy maximization for selective detection. Moreover,
rather than merely naively applying them together, we
exploit the unique structure of PCF to develop a better
approach for sampling pixel boxes that is guaranteed to
sample pixel boxes with high coverage, thus offering a
further increase in performance. PartiMax is based on
the key insight that sampling pixel boxes with a proba-
bility that is directly proportional to their particle cover-
age leads to strong theoretical guarantees on the expected
utility. Thus, we prove error bounds for PartiMax that are
independent of the number of available pixel boxes n, the
number of particles in the particle filterm, or the number
of pixel boxes to be selected k.

Greedy maximization and stochastic greedy maximiza-
tion assume oracle access to the utility function and thus
compute the marginal gain for every pixel box in every
iteration. Generally, computing particle coverage func-
tion given a pixel box requires iterating over the particles
to count how many fall in the space covered by the pixel
box. Unlike greedy maximization, PartiMax does not ex-
plicitly compute particle coverage for each pixel box on
the fly but instead maintains the particle coverage of each
pixel box by updating it in every iteration. Using an ap-
proach inspired by tile coding [Sutton and Barto, 1998],
a popular reinforcement learning technique for coding
continuous state spaces, PartiMax is able to compute and
maintain the particle coverage of every pixel box with-
out having to visit n pixel boxes or m particles in every
iteration.

A tile coding consists of many tilings. Each tiling is a set
of tiles, which in our setting are pixel boxes. The pixel
boxes in a tiling partition the state space S, i.e., they are
disjoint and completely cover S. For example, Figure 4
shows two tilings in blue and yellow. Typically, different
tilings have the same size pixel boxes but start at a fixed
offset from each other, as in the figure. Since the pixel
boxes in a given tiling form a partition, there is exactly

Activated pixel
boxes that cover
the red cross

Two different
tilings

Figure 4: An example tile coding with two tilings. The
highlighted tiles show the two pixel boxes that cover the
red cross.

one pixel box in each tiling that covers a given state s′.
If we represent each tiling as an array, locating the pixel
box that covers a given state s′ requires only simple arith-
metic involving the size of the pixel boxes and the offset
between the tilings. Figure 4 highlights the two pixel
boxes, one in each tiling, that cover a given state (red
cross). Thus, by representing the entire space of pixel
boxes as multiple tilings, the set of pixel boxes Ts′ that
covers a given state s′ can be identified in constant time.

In reinforcement learning, tile codings are used to dis-
cretize continuous state spaces in order to approximate
a value function. Here, we use it differently, just as
a scheme for dividing an image into overlapping pixel
boxes. The benefit of this approach is that it enables Par-
tiMax to maintain ∆f efficiently, by providing constant-
time access to the set Ts′ of all pixel boxes that cover a
given state s′, i.e., Ts′ = {i ∈ X : i covers s′}.

Algorithm 3 PartiMax(B′,X , k)

1: 〈Φ,∆f 〉 ← initialize(B′,X)
2: AS ← ∅.
3: for l = 1 to k do
4: R ← sampleP(r,B′,X ,AS)
5: i′ ← arg maxi∈R∆f (i|AS).
6: AS ← AS ∪ i′
7: 〈∆f ,Φ〉 ← update(∆f ,Φ, i

′,AS ,X)
8: end for
9: return AS

Algorithm 3 shows pseudocode for PartiMax. It starts by
calling initialize (Algorithm 4), which returns two
data structures, Φ and ∆f . Φ(i|∅) stores for each i the
set of particles in B′ that i covers; and ∆f (i|∅) is the
number of particles that are covered by i. For each par-
ticle s′ ∈ B′, initialize calls covers, which uses the
tile coding to find the set of pixel boxes Ts′ that cover

Algorithm 4 initialize(B′,X)

1: Φ(i|∅)← ∅∀ i ∈ X
2: ∆f (i|∅)← 0 ∀ i ∈ X
3: for s′ ∈ B′ do
4: Ts′ ← covers(s′)
5: Φ(i|∅)← Φ(i|∅) ∪ {s′} ∀i ∈ Ts′
6: ∆f (i|∅) = ∆f (i|∅) + 1 ∀i ∈ Ts′
7: end for
8: return 〈Φ,∆f 〉

that particle. For every activated pixel box, i ∈ Ts′ ,
∆f (i|∅) is incremented and s′ is added to the set of par-
ticles Φ(i|∅).

Once Φ and ∆f are returned by initialize, PartiMax
proceeds like stochastic greedy maximization, adding
in each iteration the pixel box i′ that maximizes the
marginal gain from R. Since going over all pixel boxes
is too expensive, PartiMax calls Algorithm 5 to obtain
R, a subset of X of size r (r << n). However, unlike
stochastic greedy maximization, R is not sampled uni-
formly randomly but instead Algorithm 5 samples from
a distribution such that the probability that i is included
inR is directly proportional to the particle coverage of i.

Algorithm 5 sampleP(r,B′,X ,AS)

1: R ← ∅
2: while |R| < r do
3: s′ ∼ Unif(B′)
4: if s′ is not covered by AS then
5: Ts′ ← covers(s′)
6: i ∼ Unif(Ts′) // uniformly random sample from Ts′
7: R ← R∪ i
8: end if
9: end while

10: returnR

Algorithm 6 update(∆f ,Φ, i
′,AS ,X)

1: for s′ ∈ Φ(i′) do
2: Ts′ ← covers(s′)
3: ∆f (i|AS) = ∆f (i|AS)− 1 ∀i ∈ Ts′
4: Φ(i|AS)← Φ(i|AS) \ s′ ∀i ∈ Ts′
5: end for
6: return 〈∆f ,Φ〉

In general, sampling from such a distribution would be
difficult, but with PCF we can do this efficiently. Algo-
rithm 5 first uniformly randomly samples a particle from
the belief. If the particle is not covered by AS , then it
uses tile coding to find the set of pixel boxes Ts′ that
cover s′ and adds a pixel box uniformly randomly from
Ts′ . This is repeated until r pixel boxes are added toR.

At the end of each iteration, PartiMax calls update (Al-
gorithm 6), which updates ∆f (i|AS) and Φ(i|AS) for
every i ∈ ∪s′∈Φ(i′|AS)Ts′ . It starts by iterating over
the particles s′ in Φ(i′|AS) and for each particle uses
the tile coding to find Ts′ . For every pixel box i ∈
Ts′ , ∆f (i|AS) is decremented and s′ is removed from
Φ(i|AS), to account for the fact that i′ now covers s′ and
thus the marginal gain of i is reduced. The marginal gain
of every other i remains unchanged. Similarly, Φ(i|AS)
is updated by subtracting s′ from Φ(i|AS) for every i in
Ts′ .

6 ANALYSIS

We now establish bounds on the cumulative error of Par-
tiMax that are independent of the problem size. We start
with a lemma that shows that the probability of adding
i to R via Algorithm 5 is directly proportional to the
marginal gain of i.

Lemma 1. Let i = sampleP(1,B′,X ,AS) then
PrAS (i = ij) = c∆(ij |AS), where c = 1

tm′ is a con-
stant where t is the number of tilings andm is the number
of particles in B′ that are not covered by AS .

Proof. The probability that a given pixel box ij is sam-
pled in Ts′ (in line 5) is the number of particles cov-
ered by ij in B′ that are not covered by AS , which is
∆f (ij |AS):

Pr(ij ∈ Ts′) =
1

m
∆f (ij |AS). (6)

Since there is exactly one pixel box that covers a given
state in each of the t tilings, the total number of pixel
boxes, that is the size of Ts′ is t. Since Algorithm 5 sam-
ples uniformly randomly from Ts′ , then the probability
of selecting ij from Ts′ is 1

|Ts′ |
= 1

t . Thus,

Pr(i = ij) =
1

t

1

m
∆f (ij |AS). (7)

Next, we show that PartiMax is guaranteed to be near-
optimal.

Theorem 4. Let F be a set function over a collec-
tion of sets A+ = {A1,A2 . . .Av} and let A∗ =
arg maxA∈A+ F (A), let A′ = arg maxA∈R F (A),
such that R is formed by sampling r sets from a prob-
ability distribution such that probability of sampling A
is Pr(A) = 1

cF (A), where c is a scalar constant, such
that, c

F (A∗) − 1 ≤ r. Then,

F (A∗)− EF (A′) ≤ (
r

1 + r
)rF (A∗). (8)

Proof. Let p1, p2 . . . pv denote
P (A1), P (A2) . . . P (Av) respectively. Also without
loss of generality, we assume p1 ≥ p2 ≥ . . . pv . Conse-
quently, it follows, F (A1) ≥ F (A2) ≥ · · · ≥ F (Av).
Note A∗ = A1. The expected value of F (A′) is at least
as much as:

E[F (A′)] ≥ (1− (1− p1)r)F (A1). (9)

The term on the right corresponds to the case, when A1

is sampled at least once in R, then we are guaranteed
to get A′ = A1. The rest of the cases when A1 is not
sampled inR, we ignore, thus giving us the above bound
on E[F (A′)]. Thus,

F (A1)−E[F (A′)] ≤ F (A1)−(1−(1−p1)r)F (A1).

Since cp1 = F (A1), the above equation can be written
as:

F (A1)−E[F (A′)] ≤ cp1− (1− (1−p1)r)cp1. (10)

On differentiating the right hand side with respect to p1

and equating it to zero, we find that the maxima of right
hand size occurs at p1 = (1/(r + 1)). Also, since r ≥

c
F (A∗)−1, substituting this in the above equation we get,

F (A1)− E[F (A′)] ≤ (r/(r + 1))rF (A1).

The above theorem guarantees that, granted access to a
probability distribution such that Pr(A) = cF (A), there
exists a tight theoretical guarantee for selecting A′ =
arg maxA∈R F (A), independent of the problem size.

Directly applying Theorem 4 and Lemma 1 yields
the following lemma, which shows that the marginal
gain of PartiMax ∆f (i′|AS) in each iteration is
at least (1 − (r

r+1)r)∆f (i∗|AS), where i∗ =

arg maxi∈X\AS ∆(i|AS) and r ≥ tm
2 − 1.

Lemma 2. Let i∗ = arg maxi∈X\AS ∆f (i|AS), r ≥
tm
2 − 1 and let i′ = arg maxi∈R∆f (i|AS), whereR =
sampleP(r,B′,X ,AS), r ≥ tm

2 − 1, then,

∆f (i∗|AS)− E∆f (i′|AS) ≤ (
r

r + 1
)r∆f (i∗|AS).

Proof. Using X \ AS as A+, i∗ as A∗, i′ as A′ and ap-
plying Theorem 4 and Lemma 1 yields the desired re-
sult.
Lemma 2 in turn yields the following theorem for r ≥
tm
2 − 1:

Theorem 5.

E[f(AS)] ≥ (1− e−1 − (r/(r + 1)r))f(A∗). (11)

Proof. Let A∗ = {i∗1, i∗2, . . . , i∗k} and ASm =
{iS1 , iS2 , . . . , iSm} be the solution returned by PartiMax
after m ≤ k iterations. Let AP = A∗ \ ASm =
{iP1 , . . . , iPj } and let APl be the first l elements of AP ,
withAP0 = ∅. Note that Ef(A∗ ∪ASm) can be expressed
as:

E[f(A∗∪ASm)] = E[f(ASm)]+

j∑
l=1

E[∆f (iPl |ASm∪APl−1})].

f is monotonic, E[f(A∗ ∪ ASm)] ≥ E[f(A∗)],
and by submodularity,

∑j
l=1 E[∆f (iPl |ASm)] ≥∑j

l=1 E[∆f (iPl |ASm ∪ APl−1})]. Thus,

E[f(ASm)] +
∑
i∈AP

E[∆f (i|ASm)] ≥ f(A∗). (12)

From Lemma 2, E[f(ASm+1)−f(ASm)] ≥ ∆f (i∗|ASm)−
(r
r+1)r∆f (i∗|ASm). Also, since |AP | ≤ k,

E[f(ASm+1)− f(ASm)] + (
r

r + 1
)r∆f (i∗|ASm))

≥ 1

k
[f(A∗)− E[f(ASm)]].

(13)

By induction on m the desired result can be obtained.
([Krause and Golovin, 2014; Mirzasoleiman et al., 2015;
Satsangi et al., 2015])

The above theorem establishes a bound on the error of
PartiMax that is independent of the size of the problem
and thus remains tight even for large values of n. Fur-
thermore, the above result shows that, as the size of R
increases, PartiMax’s performance is guaranteed to con-
verge to that of greedy maximization.

While we have shown these results for PartiMax for se-
lective detection, Theorem 4 is applicable to any prob-
lem that involves maximization over a set function where
we can sample from a probability distribution such that
the probability of sampling a subset A is directly pro-
portional to the value of that subset specified by the set
function F . Also note that Theorem 4 does not make any
assumptions about F and is applicable to any set func-
tion, submodular or not.

7 EXPERIMENTS
We evaluated PartiMax on a dataset containing approxi-
mately 2100 trajectories of people recorded by a camera
taking 5120×3840 resolution images running at 6 frames
per second [Schutte et al., 2016]. The trajectories were
generated using the ACF detector [Dollár et al., 2014]
and in-camera tracking [Schutte et al., 2016]. These

tracks were used to learn the motion model of the peo-
ple walking in the scene, as described below.

We model the state s as the person’s position and veloc-
ity, s = 〈x, y, vx, vy〉, where x and y describe position
and vx and vy describe velocity. Both x and y are in-
tegers in {0, . . . , 5000}. We use a motion model that
predicts the next position as:

xnext = xcurr + vcurrx +N (0, σx), (14)

for x and analogously for y. We use a maximum likeli-
hood estimate of σx learned from the data.

Each pixel box was 180 × 180 and each tiling had a
60 × 30 offset from the previous one. This offset was
chosen because it is the size of the average bounding box
required to bound a detected person in the scene. This
setup yields approximately 7000 pixel boxes per image.

We assume access to a detector that determines with 90%
accuracy whether a person is located within a given pixel
box and gives a noisy observation about the location of
the person if detected. Using the motion model and this
detector, we maintain a particle belief B about the per-
son’s location using an unweighted particle filter with
250 particles. Multi-person tracking uses a separate par-
ticle filter for each person.

In our experiments, each algorithm selects k pixel boxes
to which to apply the detector. To evaluate its perfor-
mance, we sample a test trajectory from the dataset and
try to track the person’s movement, starting with a ran-
dom belief B and updating it at each timestep using the
observations generated from the selected pixel boxes. At
each timestep, the agent is asked to predict the position of
the person in the scene and gets a reward of +1 for correct
predictions and 0 otherwise. Performance is quantified
as the total cumulative reward aggregated by the agent at
the end of a trajectory over a series of 50 timesteps.

The experiments were run for over 140 trajectories for 8
independent runs for 1 person tracking and 6 independent
runs for 3 and 5 person tracking.

As a baseline, we compare against an efficient version
of greedy maximization (GM+PCF) (in red in plots) that
employs tile coding to maintain the particle coverage of
each pixel box. GM+PCF is the same as PartiMax but,
instead of selecting the pixel box with the highest parti-
cle coverage, in each iteration fromR, GM+PCF selects
it from X . A naive implementation of greedy maximiza-
tion that computes the particle coverage of each pixel box
in every iteration by going over the entire belief was too
slow for a complete run and required 160 seconds to se-
lect k = 40 from n = 7200 for one-person tracking.
GM+PCF returns the same solution as greedy maximiza-
tion but is faster. Simple baselines like downsampling are

0 0.02 0.04 0.06 0.08 0.1
10

20

30

40

50

Average time taken per frame (in seconds)

C
u
m

u
la

tiv
e
 R

e
w

a
rd

Performance vs Time, 1 person, k = 40

GM+PCF

PartiMax, r=1

PartiMax, r=5

PartiMax, r=10

SGM+PCF, r=10

SGM+PCF, r=20

BD Performance

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

Average time taken per frame (in seconds)

C
u

m
u

la
tiv

e
 R

e
w

a
rd

Performance vs Time, 3 persons, k = 40

BD Performance

0 0.2 0.4 0.6 0.8
50

100

150

200

250

Average time taken per frame (in seconds)

C
u

m
u

la
tiv

e
 R

e
w

a
rd

Performance vs Time, 5 persons, k = 40

BD Performance

Figure 5: Total correct predictions vs. CPU time (sec-
onds) for tracking one (top), three (middle) and five (bot-
tom) people. The closer to the top-left corner, the better.

not useful as the tracking system must still process thou-
sands of pixel boxes even if the image is downsampled
by a factor of 4 or 8. Furthermore, downsampling pre-
cludes detection of high level features about the person
like the color of his/her clothes, etc., thus defeating the
purpose of deploying a high resolution camera.

We also compare to stochastic greedy maximization (in
green in the plots) that randomly samples a subset R
from X but employs tile coding to maintain the parti-
cle coverage of each pixel box. A naive implementation
of stochastic greedy maximization that computes parti-
cle coverage of each pixel box from scratch takes around
0.83 seconds for k = 40 and r = 10 for one person track-
ing. The combination of SGM + PCF returns the same
solution as stochastic greedy maximization, but faster.

Figure 5 shows a detailed comparison between PartiMax,
greedy maximization, and stochastic greedy maximiza-
tion when tracking 1, 3, or 5 people with k = 40. The
y-axis shows the cumulative correct predictions averaged
over multiple trajectories that the agent made using ob-

servations from each algorithm and the x-axis shows the
time taken by each algorithm to select 40 out of 7200
pixel boxes. Thus, the top left corner indicates good
tracking performance at a low computational cost. The
brown line in the figure shows the tracking performance
when the brute force detection is used, that is the person
detector is applied to the entire image (except the part
containing sky), which takes approximately 2.5 seconds.

The blue diamond and triangle at the top left corner of
each plot show the superior performance and computa-
tional efficiency of PartiMax compared to the baselines.
PartiMax not only matches the performance of greedy
maximization, it does so extremely efficiently with a low
value of r, thanks to the sampling scheme we propose.
Stochastic greedy maximization’s tracking performance
suffers due to its random sampling, while the compu-
tational cost of GM+PCF increases with the number of
people. PartiMax combines the best of both of these
baselines and performs better both in terms of tracking
performance and computational cost. In fact, as the num-
ber of people in the scene increases, PartiMax scales
much better than any other algorithm. Overall, PartiMax
is able to retain 80% percent of BD’s tracking perfor-
mance but is at least 10 times faster.

8 CONCLUSIONS & FUTURE WORK

This paper proposed a new tracking system that selec-
tively processes only a fraction of an image to track peo-
ple in real time. We proposed a new algorithm PartiMax
that exploits submodularity to quickly identify the most
relevant regions in an image. We applied our tracking
system to a real-life dataset and showed that it retains
80% of tracking performance even while processing only
a fraction of each image and running in real time. In fu-
ture we plan to apply PartiMax to sensor selection tasks
and other applications that involves maximizing cover-
age functions.

Acknowledgements

We thank TNO for providing us with the dataset used in
our experiments. We also thank the STW User Commit-
tee for its advice regarding active perception for track-
ing systems. This research is supported by the Dutch
Technology Foundation STW (project #12622), which is
part of the Netherlands Organisation for Scientific Re-
search (NWO), and which is partly funded by the Min-
istry of Economic Affairs. Frans Oliehoek is funded
by NWO Innovational Research Incentives Scheme Veni
#639.021.336.

References
A. Badanidiyuru and J. Vondrák. Fast algorithms for

maximizing submodular functions. In ICML, 2014.

B. Benfold and I. Reid. Stable multi-target tracking in
real-time surveillance video. In CVPR, 2011.

T.M. Cover and J.A. Thomas. Entropy, relative entropy
and mutual information. Wiley-Interscience, 1991.

M. Denil, L. Bazzani, H. Larochelle, and N. de Freitas.
Learning where to attend with deep architectures for
image tracking. Neural computation, 2012.

P. Dollár, R. Appel, S. Belongie, and P. Perona. Fast
feature pyramids for object detection. TPAMI, 36(8),
2014.

A. Doucet, N. De Freitas, and N. Gordon. Sequential
Monte Carlo methods in practice. Springer Science &
Business Media, 2001.

P. Felzenszwalb, Girshick, D McAllester, and D. Ra-
manan. Object detection with discriminatively trained
part-based models. TPAMI, 32(9), 2010.

A. Gupta, A. Mittal, and L.S. Davis. Cost: An approach
for camera selection and multi-object inference order-
ing in dynamic scenes. In ICCV, 2007.

J. Hosang, M. Omran, R. Beneson, and B. Schiele. Tak-
ing a deeper look at pedestrians. In CVPR, 2015.

K. Kim, D. Lee, and I. Essa. Detecting regions of interest
in dynamic scenes with camera motions. In CVPR.
IEEE, 2012.

A. Krause and D. Golovin. Submodular function maxi-
mization. Cambridge University Press, 2014.

A. Krause and C. Guestrin. Near-optimal nonmyopic
value of information in graphical models. In UAI,
2005.

M. La Cascia, S. Sclaroff, and V. Athitsos. Fast, re-
liable head tracking under varying illumination: An
approach based on registration of texture-mapped 3D
models. TPAMI, 2000.

B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi,
J. Vondrák, and A. Krause. Lazier than lazy greedy.
In AAAI, 2015.

V. Mnih, N. Heess, A. Graves, et al. Recurrent models of
visual attention. In NIPS, 2014.

P. Natarajan, T.N. Hoang, K.H. Low, and M. Kankan-
halli. Decision-theoretic approach to maximizing ob-
servation of multiple targets in multi-camera surveil-
lance. In AAMAS, 2012.

G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. An anal-
ysis of approximations for maximizing submodular set
functions. Mathematical Programming, 14, 1978.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi.
You only look once: unified real-time object detection.
2016.

Y. Satsangi, S. Whiteson, and F. Oliehoek. Exploiting
submodular value functions for faster dynamic sensor
selection. In AAAI, 2015.

Y. Satsangi, S. Whiteson, and F. Oliehoek. PAC greedy
maximization with efficient bounds on information
gain for sensor selection. In IJCAI 2016, July 2016.

K. Schutte, G. Burghouts, N. Van der Stap, V. Wester-
woudt, et al. Long-term behavior understanding based
on the expert-based combination of short-term obser-
vations in high-resolution CCTV. In SPIE, volume
9995, 2016.

E. Shtrom, G. Leifman, and A. Tal. Saliency detection in
large point sets. In ICCV, 2013.

D. Silver and J. Veness. Monte-Carlo planning in large
POMDPs. In NIPS, 2010.

A. Smeulders, D. Chu, R. Cucchiara, S. Calderara,
A. Dehghan, and M. Shah. Visual tracking: An ex-
perimental survey. TPAMI, 2014.

M.T.J. Spaan and P.U. Lima. A decision-theoretic ap-
proach to dynamic sensor selection in camera net-
works. In ICAPS, 2009.

R.S. Sutton and A.G. Barto. Reinforcement learning: An
introduction, volume 1. MIT press Cambridge, 1998.

H. Takamura and M. Okumura. Text summarization
model based on maximum coverage problem and its
variant. In Conf. Europ. Chapter Assoc. Comp. Ling.,
2009.

C.-K. Tham and M. Han. Information-driven sensor se-
lection for energy-efficient human motion tracking. In
IEEE Int. Conf. Distr. Comp. in Sensor Syst., 2013.

Y. Tian, P. Luo, X. Wang, and X. Tang. Pedestrian detec-
tion aided by deep learning semantic tasks. In CVPR,
2015.

H. Wang, K. Yao, and D. Estrin. Information-theoretic
approaches for sensor selection and placement in sen-
sor networks for target localization and tracking. IEEE
J. Comm. and Networks, 2005.

J.L. Williams, J.W. Fisher III, and A.S. Willsky. Sensor
management for multiple target tracking with hetero-
geneous sensor models. In SPIE, volume 6235, 2006.

J.L. Williams, J.W. Fisher, and A.S. Willsky. Ap-
proximate dynamic programming for communication-
constrained sensor network management. IEEE Trans.
Signal Proc., 55(8), 2007.

