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1
Introduction

A key challenge in the field of Artificial Intelligence (AI) is the design of intelligent
autonomous agents that can understand their environment and behave rationally in it
[Russell and Norvig, 2009]. While there are multiple definitions of intelligence, the
basic trait of any intelligent entity is the ability to perceive its environment and react
appropriately to it [Stangor, 2010]. Perception refers to understanding the environment
an entity is acting in at an appropriate level of abstraction. Control refers to taking actions
that can cause a desired behaviour. Based on these basic definitions, Figure 1.1 shows
the design of an agent made up of a perception and a control module.

The perception module processes the raw data collected by the agent’s sensors, ex-
ample images from the visual sensors or speech from the audio sensors, generally with
the aide of signal processing and machine learning algorithms to infer the hidden state
of the world. The result of processing the raw data is then passed to the control module.
Depending on the state of the world and the aim of the agent, the control module takes
actions so that the agent gets closer to its goal.

Generally, the perception module consists of signal processing and machine learning
algorithms that can process the raw information from the sensors to infer the hidden state
of the world. [Bajcsy, 1988, Bajcsy et al., 2016]. However, perception in itself is a com-
plex process that is not limited to the processing of raw information but instead requires
the interaction of an agent with its environment. For example, humans continuously ex-
plore and interact with their environment to understand it better. Consequently, questions
like “where to look”, “when to look”, “what to remember”, etc. are naturally easy for
the humans to answer. Similarly, a truly intelligent and autonomous agent must have the
ability to reason about its uncertainty and come up with strategies for information gath-
ering. The perception module, thus, in itself presents a control problem the aim of which
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1. Introduction

Figure 1.1: A simple agent consisting of a perception and control module.

is to come up with strategies for intelligent information acquisition so that the perception
module can best infer the state of the world.

Active perception [Bajcsy, 1988, Bajcsy et al., 2016] means that an agent is capable
of coming up with control strategies for information gathering while reasoning about its
own limitations and constraints. These limitations can be inherent in the environment,
e.g., occlusions in images [Le et al., 2008]; or it can be due to the limitations of the
agent’s design, e.g., faulty sensors [Spaan et al., 2015]. For example, consider an agent
navigating in an unknown environment trying to map as many 3D objects as possible
[Patten et al., 2015]. To do so the agent must navigate safely in the unknown environ-
ment, and to accurately detect a 3D object it must align itself in a position that is most
suitable for its sensor and the object detection algorithm. Similarly, an autonomous un-
derwater vehicle (AUV) [Binney et al., 2010] sent in the ocean to collect oceanographic
data must navigate its way such that it does not crash into the ships or the landmasses
that it encounters and still collect as much useful data as possible. At the same time it
must monitor its battery to make sure it has sufficient power left to navigate and resurface
at a point where the human operator can safely collect it. Another example of an active
perception task is an agent focusing on the most relevant part of an image/video when
faced with information overload that cannot be handled by the resources that are at its
disposal [Satsangi et al., 2017a].

This thesis tackles the control problem for active perception with a special focus on
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1.1. Active Perception

resource allocation in multi-camera systems for surveillance and automated tracking. A
key challenge in the design of multi-sensor systems is the efficient allocation of scarce
resources, for example, computational power, bandwidth, energy, manpower, etc [Spaan
and Lima, 2009, Satsangi et al., 2015a]. These resource constraints give rise to the sensor
selection problem [Kreucher et al., 2005, Williams et al., 2007, Satsangi et al., 2015a]
where an agent must select a subset of the available sensors to allocate the scarce re-
sources to reduce the uncertainty about its environment. Following a decision-theoretic
approach this thesis presents principled methods for efficient resource allocation in multi-
sensor systems and extends them to general active perception problems. In the rest of this
chapter, the key features of the active perception and the sensor selection problem are dis-
cussed; followed by the motivation for the decision-theoretic approach, the focus of this
thesis and the research questions addressed in this thesis.

1.1 Active Perception

Active perception can be defined as the study of the control strategies that aim to reduce
the uncertainty about the state of the world, while reasoning about various constraints
imposed on an agent. Typically, reducing uncertainty is only a means to an end, for
example, a robot whose goal is to reach a particular location may take sensing actions
that reduce its uncertainty about its current location because doing so helps it determine
what future actions will bring him closer to its goal. By contrast, in pure active perception
reducing uncertainty is an aim in itself. For example, consider an agent trying to maintain
surveillance in a shopping mall. Typically, the goal of such an agent is to ascertain the
state of its environment and not use that knowledge to achieve a goal. While perception
is arguably always performed to aid decision-making, in an active perception problem
that decision is made by another agent such as a human, that is not necessarily modelled
as a part of the agent. For example, in the surveillance task, the agent might be able
to detect a suspicious activity but only the human users of the system may decide how
to react to such an activity. Similarly, an autonomous underwater vehicle can collect
oceanographic data, but it must be retrieved and analysed by the human user. While
there are approaches [Eck and Soh, 2012, Spaan et al., 2015] that can model the decision-
making and the information gathering as a part of the same agent for hybrid tasks, in this
thesis we focus on the pure active perception tasks where the aim of the agent is solely
to reduce the uncertainty about its environment, specifically for multi-camera networks
to maintain surveillance or to track people in large spaces.

When designing a multi-sensor system a key challenge is to allocate the scarce re-
sources efficiently. For example:
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1. Introduction

• Manpower: Often maintaining surveillance in public spaces such as a shopping
mall or an airport requires human operators to monitor the video streams from
a myriad number of cameras. In such cases, the manpower is a scarce resource
as humans, in general, have limited attention span and there may not be enough
human operators to monitor the large number of video streams from the camera
network. Thus, the manpower must be utilized efficiently by selectively displaying
regions of high activity or high importance.

• Computational Power: In many settings, the computational power is a scarce re-
source, as it is not possible to process all the images from all the cameras at ev-
ery point of time due to the high computational cost of the sophisticated image
processing algorithms. This is especially true when ultra high-resolution images
or/and camera networks with a large number of cameras are involved. In cases like
this, the agent must select the appropriate regions to which to apply the processing
algorithms on while reasoning about its uncertainty about the state of the world.

• Bandwidth: In some cases, there is not sufficient bandwidth available to transfer
all the images to the computational unit because of the large size of the images.
In case of a human operator typically the number of displays is less than the total
number of cameras deployed, thus not all the images can be displayed in front of
the human operator at the same time. The agent in such situations must select the
most informative set of images that must be sent to the computational unit or to the
human operator.

• Energy: Energy is a scarce resource simply because the user of a multi-camera
system would not want all the cameras and the displays to be ‘ON’ at every point
of time to minimize the energy consumption.

These resource constraints give rise to the sensor selection [Williams et al., 2006, Spaan
and Lima, 2009, Natarajan et al., 2012, Satsangi et al., 2015a] problem where an agent
must select k out of the n available sensors to allocate the given resources, where k is the
maximum number of sensors allowed given the resource constraints, in order to minimize
the uncertainty about its environment.

When the state is static, a myopic approach that maximizes the immediate expected
reduction in uncertainty is typically sufficient. However, when the state changes over
time, the agent must reason about the consequences of its own actions over a longer pe-
riod of time. For example, as the people in a shopping mall move around, the agent must
reason about the consequences of its selection of k cameras depending on the motion of
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1.2. Approach

people in the shopping mall over the next few time steps to find the most informative sub-
set of sensors to maintain surveillance. The agent must also reason about the limitations
of its sensors, since the sensory units and the data processing algorithms are typically not
100% accurate. Thus, the agent cannot directly fully observe the world instead it must
deal with partial observability. In the surveillance example, the agent must reason about
the accuracy of the person detection algorithm [Dollár et al., 2010], that is used to detect
the people in the scene when deciding the utility of a camera/sensor.

Dynamic scene, partial observability and long-term reasoning are the common fea-
tures of the active perception problems. In the next section we describe the approach of
this thesis to tackle the challenges of active perception.

1.2 Approach

Active perception problems require an agent to reason about the utility of its actions
over a period of time when the outcome of its actions is uncertain. Decision-theoretic
approaches enable an agent to identify actions that have high utility under uncertainty
[Boutilier et al., 1999]. A natural decision-theoretic model for the challenges common
to the active perception problems is the partially observable Markov decision process
(POMDP) [Astrom, 1965, Sondik, 1971, Kaelbling et al., 1998, Kochenderfer, 2015].
POMDPs provide a comprehensive and powerful framework for planning and learning
under uncertainty. They can model the dynamic and partially observable state and express
the goals of the agent in terms of rewards associated with state-action pairs. The agent
at every time step maintains the knowledge about the state of the world in terms of a
probability distribution also called as a belief. Using the POMDP model of the world the
agent can compute a policy that is a mapping from the beliefs to the actions such that it
tells the agent which action to take when it encounters a certain belief. In the surveillance
example, by modelling the motion of the people and by accounting for the accuracy of
the person detection algorithms, the agent can simulate the future possibilities resulting
from his actions to find the one that earns the most reward, which in this case is the one
that reduces the uncertainty about the world.

In a POMDP model, at each timestep, the agent takes an action and receives an
observation that is correlated with the true state of the world. Using this observation the
agent can update its belief about the world. Depending on the true state and the action
taken by the agent, the agent also receives a positive or negative scalar reward. The
aim of the agent is to take actions so that it can maximize the expected sum of rewards
that it collects over a period of time. Figure 1.2 shows an example POMDP model of
an agent managing resources in an automated tracking system by selectively applying
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1. Introduction

Figure 1.2: A POMDP agent selectively applying visual processing algorithms to raw
observations generated by cameras/sensors. The agent’s actions here are to select which
visual processing algorithm to apply on the raw sensor observations.

visual processing algorithms to the raw observations. Because the agent’s actions are
dependent on its belief, it empowers it to adjust its visual processing according to its
current uncertainty about the world.

Planning Methods: Given a POMDP model, planning methods [Sondik, 1971,
Cheng, 1988, Ross et al., 2008, Bonet and Geffner, 2009, Shani et al., 2012] can be used
to compute the optimal value function which specifies the expected cumulative long-term
reward of an action. The optimal policy can be simply derived from the optimal value
function by selecting for each belief the action that maximizes the value function. While
numerous methods exist for computing the optimal value function exactly [Sondik, 1971,
Monahan, 1982], their computational costs are prohibitively expensive for all but small
problems. Approximate planning methods [Hauskrecht, 2000, Pineau et al., 2006, Shani
et al., 2012] scale better by either exploiting independence represented using algebraic
decision diagrams [Hoey et al., 1999] or by decomposing the POMDP and solving it
hierarchically [Toussaint et al., 2008]. In particular, point-based methods [Pineau et al.,
2006, Shani et al., 2012] have shown promising performance on POMDPs that are of
reasonably large size. Point-based methods compute the optimal value function only for
a sample of the belief points and use it to approximate the value function for the rest of
the belief points.

The idea of planning for the entire belief space before the agent executes the task falls
in the category of offline planning. For large problems, online planning [Ross et al., 2008]
can be a better option as the agent here plans while executing the task. Consequently, the
agent aims to find the optimal action only for the belief that it encounters as it executes
certain actions. In general, online planners rely on the simulations generated using the
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1.2. Approach

POMDP model of the world and the results of the simulations are then used to estimate
the value of each action. Monte Carlo tree search (MCTS) [Silver and Veness, 2010],
one of the most popular online planners uses simulations to construct a tree estimating
the effect of taking each action in the current state and its successor state encountered
during the simulations. Using confidence intervals on the value of each action, the agent
can focus on the more promising actions while only sufficiently exploring the highly
uncertain actions. The main challenge with planning online is that tracking people is
a real-time task and thus the online planner must be able to plan for large POMDPs in
real-time, which is a computationally intensive task. Moreover, when the computational
power is a scarce resource, MCTS might end up using the same scarce computational
resources that the agent aims to intelligently allocate.

Learning POMDP Model: Applying a POMDP planning method requires a model of
the POMDP, i.e., description of the probability distributions governing the reward, the
state transition function and the observation function. Depending on the individual case,
the reward function in many situations is known in advance as it can be hand-designed
by the user. In principle, the reward function in a POMDP is expressed as a function
of the state and the action. For active perception the aim of the agent is to minimize
the uncertainty about its environment. One way to formulate uncertainty reduction as an
end in itself is to define a reward function whose additive inverse is some measure of
the agent’s uncertainty, e.g., belief entropy [Cover and Thomas, 1991]. The traditional
POMDP framework does not allow for the reward to be expressed as a function of the
belief. ⇢POMDP [Araya-lópez et al., 2010] and POMDP with Information Rewards
(POMDP-IR) [Spaan et al., 2015] are two frameworks that can approximately model the
reward function as a function of the belief and thus we use them to model the belief-based
rewards in our setting.

The transition function in a POMDP describes the probability of transitioning from
one state to another under the Markov assumption, i.e., the next state is solely dependent
on the previous state and the action the agent takes. Learning it in the POMDP setting
poses a unique challenge, as the state changes are not directly observable with the camera
network, which only records the observations. Since in our setting, the state transition
mainly involves modelling the motion of people in public spaces, it can be achieved by
exploiting the vast computer vision literature on person tracking and motion modelling,
especially which are used for decision-making [Joseph et al., 2011, Denil et al., 2012,
Kooij et al., 2012, Smeulders et al., 2014]. The observation function describes the prob-
ability of receiving an observation after taking an action in a state. Depending on the
person detector [Dollár et al., 2012, 2014] and given some data about the true position
of the people in certain images probability of getting a right/wrong observation can be
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1. Introduction

approximated.
Learning the optimal policy: Instead of learning a POMDP model and then com-

puting the optimal policy, it is also possible to directly learn the optimal policy without
explicitly modelling and learning the transition and observation functions. In contrast to
planning methods (also called as model based reinforcement learning methods), model
free reinforcement learning (RL) [Sutton and Barto, 1998] methods such as Q learning
[Watkins and Dayan, 1992] and temporal difference (TD) learning [Sutton, 1988] aim
to directly learn the optimal policy from the past experience of the agent. The key idea
behind a model free RL approach is that the agent starts with a random policy to interact
with the world and as it accumulates experience it updates the policy according to a cer-
tain update rule. With sufficient experience the agent is able to learn the optimal policy
from its experience.

Model free approaches tend to be data intensive as the agent must explore enough
possibilities before finding the best among all. However, they eliminate the need to make
explicit assumptions and design choices for the model of the world that when not satisfied
in the real-world may lead to bad performance. For active perception tasks, learning
a policy directly from the experience is challenging because the agent must visit the
infinitely many possible belief states and explore relations among the large action space
to learn the optimal policy. However, with the recently developed deep reinforcement
learning methods like deep Q networks (DQN) [Mnih et al., 2013] and deep recurrent Q
networks (DRQN) [Hausknecht and Stone, 2015] it is possible to address this challenge
by learning efficient representations of the belief space to approximately learn the optimal
policy.

While the above mentioned approaches are principled and promising in terms of the
empirical performance, scaling them to large problems remains a challenge. In the next
section we sum up the research questions and challenges addressed in this thesis to scale
decision-theoretic approaches to large problems.

1.3 Research Questions & Contributions

The broad question that this thesis tackles is “How can a multi-sensor system allocate its
own resources in a principled and efficient way?” We formulate the problem of resource
allocation as selecting k out of the n available sensors to allocate the available resources.
We develop and learn a POMDP model of the world that an agent can use to identify
the actions with high utility where the aim of the agent is to minimize the uncertainty in
its belief about the world. In the attempt to build a tracking system that can effectively
allocate its own resources, we focus on the following research questions:
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• RQ 1 “How can we efficiently formulate uncertainty as an end reward in
POMDPs?”

Traditionally, the reward in a POMDP is specified in terms of state-action tuples,
which is exploited by most existing POMDP planners. As uncertainty is a func-
tion of the belief of the agent, the reward in such cases is a function of the belief
of the agent and not the state of the world. Araya-lópez et al. [2010] introduced
⇢POMDP that extends the traditional POMDP framework to allow belief-based
reward functions (reward functions conditioned on the belief of the agent instead
of the state of the world). Similarly, POMDP-IR [Spaan et al., 2015] rewards the
agent for correctly predicting the state of the world leading to beliefs with less
uncertainty. However, it is not clear out of ⇢POMDP and POMDP-IR, which is
the ‘better’ framework to model belief-based rewards in POMDPs? Moreover,
since both ⇢POMDP and POMDP-IR are relatively new, it is not clear what are the
advantages or disadvantages of using belief based rewards against state based re-
wards in POMDPs. Chapter 3 answers these questions by showing that ⇢POMDP
and POMDP-IR are equivalent frameworks, i.e., any POMDP-IR can be translated
to be a ⇢POMDP (and vice-versa) that preserves the value function for equivalent
policies. We also introduce a simple factorization applicable to the action space of
any POMDP-IR, leading to better computational efficiency of the planning meth-
ods for POMDP-IR and ⇢POMDP. Finally, we give a detailed empirical analysis
to compare state based rewards and belief based rewards that identifies the critical
factors relevant to the performance and the behaviour of an agent for the active
perception tasks.

• RQ 2 “How can an agent perform long-term planning for active perception
POMDPs with large combinatorial action spaces?”

Existing planning methods for POMDPs are able to address a large state space in
POMDPs [Pineau et al., 2006, Shani et al., 2012]. However, planning for POMDPs
with large combinatorial action spaces still remains a challenge. Chapter 4 tack-
les the challenge of long-term planning for large action space POMDPs. First,
we propose a new point-based planning method, greedy point-based value itera-
tion (PBVI) that scales much better in the action space of a POMDP. The main
idea is to replace the maximization operator in the Bellman optimality equation
with greedy maximization. We present theoretical results bounding the error in
the value function computed by greedy PBVI. Furthermore, we prove that, un-
der certain conditions including submodularity the value function computed using
POMDP backups based on greedy maximization has bounded error. We achieve
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this by extending the existing results [Nemhauser et al., 1978] on greedy maxi-
mization, which are valid only for single time step, to a full sequential decision
making setting where the greedy operator is employed multiple time over multiple
timesteps. In addition, we show that the conditions required for such a guarantee
to hold are met, or approximately met, if the reward is defined as negative belief
entropy. Experiments on a real-life dataset show that greedy PBVI outperforms a
myopic baseline and almost matches the performance of existing point-based plan-
ners at a fraction of the computational cost leading to overall better scalability.

• RQ 3 “How can an agent select k out of n available cameras online in multi-camera
networks to track people in large public spaces?”

When large spaces such as airports and shopping malls are involved maintain-
ing exact probability distribution over the hidden state is not possible due to the
large size of the state space (all possible configurations of the hidden state). Con-
sequently, it is not possible to evaluate the information-theoretic definitions of
the utility/value function exactly. Greedy maximization and its variants [Mirza-
soleiman et al., 2015] assume an oracle access to the function that is being maxi-
mized. However, information-theoretic definitions of the utility functions are typ-
ically hard to evaluate exactly, especially for large state spaces. Thus, Chapter
5 presents probably approximately correct greedy maximization (PACGM) that
rather than computing the value function exactly assumes access to confidence
bounds on it. These confidence bounds are used to prune actions that with high
probability are sub-optimal. Furthermore, we provide a PAC analysis that shows
that with high probability PACGM returns an approximately optimal set. Given an
unbiased estimator for a function, it is possible to use traditional methods like the
Hoeffding’s inequality to obtain confidence bound on the function. However, the
information-theoretic definitions that can quantify the uncertainty in a probability
distribution require computing the discrete entropy of the posterior distribution,
which is hard to estimate in an unbiased way. Therefore, we present novel and
cheap confidence bounds on conditional entropy. Finally, we apply PACGM with
these new confidence bounds to a real-life dataset to show empirically that PACGM
scales better than greedy maximization.

• RQ 4 “How can an agent focus on the relevant parts of a ultra high-resolution video
to track people in real-time?”

In settings that involve tracking objects in ultra high-resolution images (aerial shots
of an area) even detecting an object in the image can take many seconds since a
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trained object detector must be applied at all possible locations/pixels in the im-
age to detect the object. For real-time object tracking in such systems it is not
possible to apply the object detector to all the possible locations in every image.
Chapter 6 focuses on resource allocation for real-time tracking in tracking systems
with ultra high-resolution images [Satsangi et al., 2017a]. The main focus of this
chapter is to make real-time tracking possible in ultra high-resolution videos by
selective detection that applies a trained person detector only to a handful of loca-
tions in an image instead of applying it at all possible locations. First we propose a
new utility function called particle coverage for selective detection, which is much
faster to compute than the traditional utility functions that exist in literature. To
quickly identify the relevant locations to apply a trained detector on, we propose
a new algorithm called PartiMax that maintains and updates the particle coverage
of each candidate location in the image in each iteration of greedy maximization
instead of computing it from scratch. Moreover, PartiMax subsamples a subset
of locations with high particle coverage without computing their particle coverage
and then selects the best location out of this subset of locations, thus, avoiding
the computation cost of going over all available locations. Since sampling loca-
tions with high particle coverage without computing it is not trivial, we propose
a sampling algorithm that can sample high particle coverage locations in constant
time. This is achieved by employing tile coding, a popular reinforcement learn-
ing method for discretizing continuous spaces. Furthermore, we prove that our
sampling algorithm is guaranteed to sample a location with a probability that is
directly proportional to its particle coverage. We show that given access to our
sampling algorithm, PartiMax is guaranteed to return a solution with error bounds
that are independent of the problem size. Finally, we use PartiMax to build a real-
time tracking system that is able to retain 80% of original tracking performance by
processing only 10% of the image.

• RQ 5 “How can an agent controlling a multi-camera network learn to allocate its
own resources without having to explicitly learn a model of the world?”

Planning methods require an accurate model of the world to compute the opti-
mal policy. In some cases acquiring or designing such a model of the world is
infeasible. Thus, the agent must learn an optimal behaviour directly from its expe-
rience. Chapter 7 tackles this challenge by proposing an end-to-end approach for
active perception that enables an agent to take actions to minimize its uncertainty
directly from the raw sensor data. In this chapter, we propose deep anticipatory
networks (DAN) that enable an agent to take actions to best predict the current
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and future state of the world. DAN consists of two deep neural network architec-
tures: a DQN and a model network. The Q network select k sensors out of the n

available sensors. The raw observations from these k sensors are fed to the model
network that predicts the true state of the world. The Q network is in turn rewarded
if the model network correctly predicts the state of the world, thus, encouraging
the Q network to select the potentially most informative sensors. Furthermore, we
propose a training algorithm that given some data trains DAN to learn the opti-
mal policy in an end-to-end manner. Finally we employ DAN to select k out of n

sensors to track people in a simulated setting.
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2
Background

This chapter introduces the background information essential for understanding this the-
sis. First we introduce the POMDP framework and the existing methods for finding the
optimal policy given a POMDP model. Then, we give a formal definition of the active
perception POMDP for the sensor selection task. In the traditional POMDP framework
the reward function is specified as a function of the state and the action. For active per-
ception the reward is a function of the belief of the agent, thus, we describe ⇢POMDP
and POMDP-IR, two frameworks that allow a belief-based definition of the reward func-
tion. The action space of the active perception POMDP is modelled as

�n
k

�
subsets of

sensors, each of which denotes a choice of k out of the n available sensors. Identifying
the optimal subset of sensors among these many choices can be computationally inten-
sive. To overcome this challenge, we exploit submodularity to propose approximate and
computationally tractable solutions for selecting k items out of n. Thus, at the end of
this chapter we give a brief introduction to submodular function maximization and the
related results.

2.1 Partially Observable Markov Decision Process

POMDPs provide a decision theoretic framework for modelling partial observability and
dynamic environments [Kaelbling et al., 1998]. The goal of the agent can be expressed in
terms of a reward function that specifies the reward associated with each state-action pair.
The agent maintains its knowledge about the world in form of a probability distribution
called the belief and by reasoning with the POMDP model can compute a policy (a
mapping from the beliefs to the actions) such that it maximizes the expected sum of
rewards over a period of time.

13
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Formally, a POMDP is defined by a tuple hS, A,⌦, T, O, R, b0, hi. At each time
step, the environment is in a state s 2 S, the agent takes an action a 2 A and receives a
reward whose expected value is R(s, a), and the system transitions to a new state s0 2 S

according to the transition function T (s, a, s0) = Pr(s0|s, a). Then, the agent receives
an observation z 2 ⌦ according to the observation function O(s0, a, z) = Pr(z|s0, a).
Starting from an initial belief b0, the agent maintains a belief b(s) about the state which
is a probability distribution over all possible states. If the agent took action a in belief
b and got an observation z, then the updated belief ba

z(s) can be computed using Bayes
rule:

ba
z(s

0) = Pr(z|s0, a)

P
s Pr(s

0
|s, a)b(s)

Pr(z|b, a)
8 s0 2 S, (2.1)

where
Pr(z|b, a) =

X

s0

X

s

Pr(z|s0, a) Pr(s0|a, s)b(s). (2.2)

A policy ⇡ is a mapping from the beliefs to the actions that specifies how the agent
acts in each belief. Given b(s) and R(s, a), belief-based reward, ⇢(b, a) can be defined
as:

⇢(b, a) ,
X

s

b(s)R(s, a). (2.3)

The optimal policy denoted by ⇡⇤ maximizes the expected cumulative future reward:
⇡⇤ = argmax⇡ E[

Ph�1
t=0 rt|at = ⇡(bt)], where h is a finite time horizon after which the

decision-making process (alternatively called an episode) ends and rt, at and bt are the
reward, action and belief at time t.

The t-step value function of a policy V ⇡
t can be characterized recursively using the

Bellman equation:

V ⇡
t (b) ,

"
⇢(b, a⇡) +

X

z2⌦

Pr(z|a⇡, b)V ⇡
t�1(b

a⇡
z )

#
, (2.4)

where a⇡ = ⇡(b) and V ⇡
0 (b) = ⇢(b, a⇡) (or it can be 0 as well). The action-value

function Q⇡
t (b, a) is the value of taking action a and following ⇡ thereafter:

Q⇡
t (b, a) , ⇢(b, a) +

X

z2⌦

Pr(z|a, b)V ⇡
t�1(b

a
z). (2.5)

The value function corresponding to the optimal policy is called the optimal value func-
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Figure 2.1: Illustration of the PWLC property of the value function for a 2-state POMDP.
The value function is the upper surface indicated by the solid lines.

tion V ⇤
t . The optimal value function V ⇤

t (b) can be characterized recursively as:

V ⇤
t (b) = max

a

"
⇢(b, a) +

X

z2⌦

Pr(z|a, b)V ⇤
t�1(b

a
z)

#
. (2.6)

We can also define the Bellman optimality operator B⇤:

(B⇤Vt�1)(b) = max
a

[⇢(b, a) +
X

z2⌦

Pr(z|a, b)Vt�1(b
a
z)],

and write (2.6) as V ⇤
t (b) = (B⇤V ⇤

t�1)(b).

An important consequence of these equations is that the t-step optimal value func-
tion (V ⇤

t ) is piecewise-linear and convex (PWLC), as shown in Figure 2.1, a property
exploited by most POMDP planners. Sondik [1971] showed that a PWLC value function
at any finite time step t can be expressed as a set of vectors: �t = {↵0,↵1, . . . ,↵m}.
Each ↵i represents an |S|-dimensional hyperplane defining the value function over a
bounded region of the belief space. The value of a given belief point can be computed
from the vectors as: V ⇤

t (b) = max↵i2�t

P
s b(s)↵i(s).

15
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2.2 POMDP Planning Methods

POMDP planning methods [White, 1991, Shani et al., 2012] aim to compute the optimal
value function or the optimal policy given the POMDP model of the world. Broadly,
planning can be divided into two categories: offline and online planning. Offline planning
methods compute the optimal policy for the entire belief space before the agent actually
executes the task. The agent when executing the task uses the optimal policy to find the
optimal action as it encounters a belief. Online planning circumvents the complexity of
computing the optimal policy for all possible beliefs beforehand, instead the agent plans
online while executing the task only for the beliefs that it encounters.

In this subsection we given a brief introduction to the offline planning methods for
POMDPs divided into two categories: exact methods and point-based methods.

2.2.1 Exact Methods

Exact methods [Monahan, 1982] compute the value function for all possible belief points
by computing the optimal �t using the following recursive algorithm. For each action a

and observation z, an intermediate �a,z
t set of backprojection vectors ↵a,z

i is computed
from �t�1:

�a,z
t = {↵a,z

i : ↵i 2 �t�1}, (2.7)

where for all s 2 S,

↵a,z
i (s) =

X

s02S

T (s, a, s0)O(s0, a, z)↵i(s
0). (2.8)

The next step is to take a cross-sum1 over �a,z
t sets.

�a
t = {R(s, a)}� �a,z1

t � �a,z2
t � . . . (2.10)

Then we take union of all the �a
t -sets and prune any dominated ↵-vectors:

�t = prune([a2A�
a
t ) (2.11)

The above algorithm can compute the optimal value function of a POMDP ex-
actly given the time horizon h. The computational complexity of each iteration of

1The cross-sum of two sets A and B contains all the values resulting from summing one element from each
set:

A�B = {a + b : a 2 A ^ b 2 B} (2.9)
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this algorithm, that is computing �t from �t�1 is O(|S|
2
|A||�t�1|

|⌦|), since there are
O(|A||�t�1|

|⌦|) cross-sums required to compute �a
t [Pineau et al., 2006]. Example of

other methods that aim to compute the value function exactly are Sondik’s One-pass al-
gorithm [Sondik, 1971, Smallwood and Sondik, 1973], Cheng’s Linear Support [Cheng,
1988] and Witness algorithm [Kaelbling et al., 1998]. However, the high computational
cost of these methods for large POMDPs limits their application in practice.

2.2.2 Point-Based Methods

Point-based planners [Spaan and Vlassis, 2005, Pineau et al., 2006, Shani et al., 2012]
avoid the expense of solving for all belief points by computing �t, an approximate opti-
mal set, only for a set of sampled beliefs B. Point-based methods compute �t using the
following recursive algorithm.

At each iteration (starting from t = 1), for each action a and observation z, an inter-
mediate �a,z

t , a set of backprojection vectors ↵a,z
i , is computed from �t�1:

�a,z
t = {↵a,z

i : ↵i 2 �t�1}, (2.12)

Next, �a
t is computed only for the sampled beliefs, i.e., �a

t = {↵a
b : b 2 B}, where:

↵a
b = R(s, a) +

X

z2⌦

argmax
↵2�a,z

t

X

s

b(s)↵(s). (2.13)

Finally, the best ↵-vector for each b 2 B is selected:

↵b = argmax
↵a

b

X

s

b(s)↵a
b (s), (2.14)

�t = [b2B↵b. (2.15)

The above algorithm at each timestep t, generates |A||⌦||�t�1| alpha vec-
tors in O(|S|

2
|A||⌦||�t�1|) time and then reduces them to |B| vectors in

O(|S||B||A||⌦||�t�1|) [Pineau et al., 2006]. The success of point-based methods in
many practical tasks [Spaan and Vlassis, 2005, Sridharan et al., 2010, Shani et al., 2012]
makes them an attractive starting point for solving the sensor selection task.

In this section we described the POMDP framework and the existing planning meth-
ods for POMDPs that can compute the optimal policy given the POMDP model of the
world. In the next section we describe the main components of the active perception
POMDP for modelling the sensor selection task.
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2.3 Active Perception POMDP

The goal in an active perception POMDP is to reduce the uncertainty about a feature of
interest that is not directly observable. In general, the feature of interest may be only a
part of the state, e.g., if a surveillance system cares only about the people’s positions, not
their velocities, or higher-level features derived from the state. However, for simplicity
and without the loss of generality, we focus on the case where the feature of interest is
just the state. As it will be clear from the following chapters none of our results require
this assumption. For simplicity, we also focus on pure active perception tasks in which
the agent’s only goal is to reduce the uncertainty about the state, as opposed to hybrid
tasks where the agent may also have other goals. For such cases, hybrid rewards [Eck
and Soh, 2012], which combine the advantage of belief-based and state-based rewards,
are appropriate. While we do not cover the hybrid rewards in this thesis, extending the
results presented in this thesis to hybrid rewards is pretty straightforward as we show
later in Chapter 3.

We model the sensor selection task as an active perception POMDP in which an agent
must choose a subset of available sensors at each time step. We assume that all the se-
lected sensors must be chosen simultaneously, i.e., it is not possible within a timestep
to condition the choice of one sensor on the observations generated by another sensor.
This corresponds to the common setting where generating each sensor’s observation is
time consuming, e.g., in the surveillance task, because it requires applying expensive
computer vision algorithms, and thus all observations from the selected cameras must be
generated in parallel. Formally, an active perception POMDP has the following compo-
nents:

• Actions a = ha1, . . . , ani are vectors of n binary action features, each of which
specifies whether a given sensor is selected or not. For each a, we also define its set
equivalent A = {i : ai = 1}, i.e., the set of indices of the selected sensors. Due to
the resource constraints, the set of all actions A

+ = {A : |A|  k} contains only
sensor subsets of size k or less. X = {1, . . . , n} indicates the set of all sensors.

• Observations z = hz1, . . . , zni are vectors of n observation features 2, each of
which specifies the sensor reading obtained by the given sensor. If sensor i is not
selected, then zi = ;. The set equivalent of z is Z = {zi : zi 6= ;}. To prevent
ambiguity about which sensor generated which observation in Z , we assume that,
for all i and j, the domains of zi and zj share only ;. This assumption is only made

2Each of these features can be a vector in itself.
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Figure 2.2: Model for sensor selection problem

for notational convenience and does not restrict the applicability of our methods in
any way.

For example, in the surveillance task, A indicates the set of cameras that are active
and Z are the observations received from the cameras in A. The model for the sensor
selection problem for the surveillance task is shown in Figure 2.2. Here, we assume that
actions involve only selecting k out of the n available sensors. The transition function is
thus independent of the actions, as selecting sensors cannot change the state. However,
as we outline later in Chapter 4, subsection 4.2, it is possible to extend our results to ar-
bitrary transition functions, that can model, e.g., mobile sensors that, by moving, change
the state.

A challenge in these settings is properly formalizing the reward function. Because
the goal is to reduce the uncertainty, reward is a direct function of the belief, not the
state, i.e., the agent has no preference for one state over another, so long as it knows what
that state is. Hence, there is no meaningful way to define a state-based reward function
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R(s,a). Directly defining ⇢(b,a) using, e.g., negative belief entropy:

⇢(b,a) = �Hb(s) =
X

s

b(s) log(b(s)), (2.16)

results in a value function that is not piecewise-linear. Since ⇢(b,a) is no longer a convex
combination of a state-based reward function, it is no longer guaranteed to be PWLC, a
property most POMDP solvers rely on. In the following subsections, we describe two
recently proposed frameworks designed to address this problem.

2.3.1 ⇢POMDPs

A ⇢POMDP [Araya-lópez et al., 2010], defined by a tuple hS, A, T,⌦, O,�⇢, b0, hi, is a
standard POMDP except that the state-based reward function R(s,a) has been omit-
ted and �⇢ has been added. �⇢ is a set of vectors, that defines the immediate re-
ward for ⇢POMDP. Since we consider only pure active perception tasks, ⇢ depends
only on b, not on a and can be written as ⇢(b). Given �⇢, ⇢(b) can be defined as:
⇢(b) , max↵2�⇢

P
s b(s)↵(s). If the true reward function is not PWLC, e.g., negative

belief entropy, it can be approximated by defining �⇢ as a set of vectors, each of which is
a tangent to the true reward function. Figure 2.3 illustrates approximating negative belief
entropy with different numbers of tangents. Solving a ⇢POMDP requires a minor change
to the existing algorithms3. In particular, since �⇢ is a set of vectors, instead of a single
vector, an additional cross-sum is required to compute �at : �at = �⇢��

a,z1
t ��a,z2

t �. . . .
Araya-lópez et al. [2010] showed that the error in the value function computed by this

approach, relative to the true reward function, whose tangents were used to define �⇢, is
bounded. However, the additional cross-sum increases the computational complexity of
computing �at in each iteration to O(|S||A||�t�1||⌦||B||�⇢|) with point-based methods.

Though the original definition ⇢POMDP do not put any constraints on the definition
of ⇢, we restrict the definition of ⇢ for an active perception POMDP to be a set of vectors
ensuring that ⇢ is PWLC, which in turn ensures that the value function is PWLC. This
is not a severe restriction because solving a ⇢POMDP using offline planning requires
a PWLC approximation of ⇢ anyway (since most POMDP planning methods require a
PWLC value function to solve the POMDP).

3Arguably, there is a counter-intuitive relation between the general class of POMDPs and the sub-class of
pure active perception problems: on the one hand, the class of POMDPs is a more general set of problems, and
it is intuitive to assume that there might be harder problems in the class. On the other hand, many POMDP
problems admit a representation of the value function using a finite set of vectors. In contrast, the use of entropy
would require an infinite number of vectors to merely represent the reward function. Therefore, even though
we consider a specific sub-class of POMDPs, this class has properties that make it difficult to address using
existing methods.
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Figure 2.3: Defining �a
⇢ with different sets of tangents to the negative belief entropy

curve in a 2-state POMDP.
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2.3.2 POMDPs with Information Rewards

Spaan et al. [2015] proposed POMDPs with information rewards (POMDP-IR), an alter-
native framework for modelling active perception tasks that relies only on the standard
POMDP framework. Instead of directly rewarding low uncertainty in the belief, the
agent is given the chance to make predictions about the hidden state and rewarded, via
a standard state-based reward function, for making accurate predictions. Formally, a
POMDP-IR is a POMDP in which each action a 2 A is a tuple han, api where an 2 An

(An is set of all possible an) is a normal action, e.g., moving a robot or turning on a
camera (in our case an is a), and ap 2 Ap (Ap is set of all possible ap) is a prediction
action, which expresses predictions about the state. The joint action space is thus the
Cartesian product of An and Ap, i.e., A = An ⇥Ap.

Prediction actions have no effect on states or observations but can trigger rewards via
the standard state-based reward function R(s, han, api). While there are many ways to
define Ap and R, a simple approach is to create one prediction action for each state, i.e.,
Ap = S, and give the agent positive reward if and only if it correctly predicts the true
state:

R(s, han, api) =

8
<

:
1, if s = ap

0, otherwise.
(2.17)

Thus, POMDP-IR indirectly rewards beliefs with low uncertainty, since these enable
more accurate predictions and thus more expected reward. Furthermore, since a state-
based reward function is explicitly defined, ⇢ can be defined as a convex combination
of R, as in (2.3), guaranteeing a PWLC value function, as in a regular POMDP. Thus, a
POMDP-IR can be solved with standard POMDP planners. However, the introduction of
prediction actions leads to a blow-up in the size of the joint action space |A| = |An||Ap|

of POMDP-IR. Replacing |A| with |An||Ap| in the complexity analysis of point-based
methods yields a computational complexity of O(|S||An||�t�1||⌦||B||Ap| +

|S|
2
|An||Ap||⌦||�t�1|) for computing �t from �t�1 for POMDP-IR.
Note that, though not made explicit in Spaan et al. [2015], several independence

properties are inherent to the POMDP-IR framework, as shown in Figure 3.2 in Chapter
3. In Chapter 3, we introduce a new technique to show that these independence properties
can be exploited to solve a POMDP-IR much more efficiently and thus avoid the blow-up
in the size of the action space caused by the prediction actions.

In this section we formulated the active perception POMDP and described ⇢POMDP
and POMDP-IR, two frameworks that can model uncertainty as an end reward in
POMDPs without breaking the PWLC property of the value function. In the next section
we introduce submodularity and greedy maximization that we use to propose bounded
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approximate solutions for the sensor selection task. We also describe the existing variants
of greedy maximization that are computationally cheaper than the greedy maximization
and the associated error bounds with these algorithms.

2.4 Submodular Function Maximization

Submodularity is a property of set functions that formalizes the notion of diminishing
returns, i.e., adding an element to a set increases the value of the set function by a smaller
or equal amount than adding that same element to a subset as illustrated in the Figure 2.4.
Formally, given a ground set X = {1, 2 . . . n}, a set function F : 2X ! R, is submodular
if for every AM ✓ AN ✓ X and i 2 X \ AN ,

�F (i|AM ) � �F (i|AN ), (2.18)

where �F (i|A) = F (A [ i) � F (A) is the marginal gain of adding i to A. Typi-
cally, the aim is to find an A

⇤ that maximizes F subject to certain constraints. Here,
we consider a constraint on A

⇤’s size: A
⇤ = argmaxA2A+ F (A). Submodularity is

a naturally occurring property in many real-life situations. Consequently, submodular
function maximization finds application in many real-world problems, e.g., summarizing
text [Takamura and Okumura, 2009, Lin and Bilmes, 2010], selecting subsets of train-
ing data for classification [Chen and Krause, 2013], or selecting sensors to minimize
uncertainty about a hidden variable [Satsangi et al., 2015a].

Algorithm 1 greedy-argmax(F, X , k)

A
G
 ;

for m = 1 to k do
A

G
 A

G
[ argmaxi2X\AG �F (i|AG)

end for
return A

G

As n increases, the
�n

k

�
possibilities for A

⇤ grow rapidly, rendering naive maximiza-
tion intractable. Instead, greedy maximization finds an approximate solution A

G faster
by iteratively adding to a partial solution the element that maximizes the marginal gain.
Given a set function F , greedy maximization computes a subset A

G
✓ X that approx-

imates A
⇤ = argmaxA2A+ F (A). As shown in Algorithm 1, it does so by repeat-

edly adding to A
G the element i that maximizes the marginal gain �F (i|AG). Greedy

maximization computes A
G in O(n ⇥ k) which is faster than the naive maximization.

Nemhauser et al. [1978] showed that, under certain conditions, greedy maximization has
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Figure 2.4: Figure illustrating submodularity as the notion of diminishing returns. AM is
the set of sensor only containing the yellow sensor and AN is the set of sensors containing
the yellow and the purple sensor. Thus, AM ⇢ AN The blue sensor is added to both AM

and AN . The increase in the area covered caused by the addition of the blue sensor to AN

is bounded by the increase in the area covered caused by the addition of the blue sensor
to AM . Thus, illustrating the notion of diminishing returns as adding the blue sensor to
a set can only cause the increase in the area covered by the resulting set of sensors by a
smaller or equal amount than adding the same blue sensor to a (smaller) subset.
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2.4. Submodular Function Maximization

bounded error.

Theorem 1. [Nemhauser et al., 1978] Let X = {1, 2, . . . , n} and let A
+ = {A ✓ X :

|A|  k}. Let F be a non-negative, monotone and submodular function F : 2X ! R+,
A

⇤ = argmaxA2A+ F (A) and A
G = greedy-argmax(F, X , k) , then F (AG) � (1�

e�1)F (A⇤).

Proof. This proof is a constant and important feature of this thesis, thus, we present it
here. This proof is taken from Krause and Golovin [2014].

Let �F (i|A) denote the marginal gain of adding any element i to a set A:

�F (i|A) = F (A [ i)� F (A). (2.19)

Let A
G
m denote the greedily build subset of size m, that is,

A
G
m = greedy-argmax(F, X , m). (2.20)

Consequently, by definition, A
G = A

G
k . Let {i⇤1, i

⇤
2, . . . , i

⇤
k} (arbitrary order), be the k

elements of A
⇤, that is,

A
⇤ = {i⇤1, i

⇤
2, . . . , i

⇤
k}. (2.21)

We start with the following set of inequalities and then provide explanation for them:

F (A⇤)  F (A⇤
[A

G
m) (2.22)

= F (AG
m) +

kX

j=1

�F (i
⇤
j |A

G
m [ {i⇤1, i

⇤
2, . . . , i

⇤
j�1}) (2.23)

 F (AG
m) +

X

i2A⇤\AG
m

�F (i|A
G
m) (2.24)

 F (AG
m) +

X

i2A⇤\AG
m

(F (AG
m+1)� F (AG

m)) (2.25)

 F (AG
m) + k(F (AG

m+1)� F (AG
m)). (2.26)

Eq (2.22) follows from monotonicity of F . Eq (2.23) is a straightforward telescopic
sum. Eq (2.24) is true because F is submodular, which implies that:

�F (i
⇤
j |A

G
m [ {i⇤1, i

⇤
2, . . . , i

⇤
j�1})  �F (i

⇤
j |A

G
m), (2.27)
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is true for all 1  j  k4. Thus,

kX

j=1

�F (i
⇤
j |A

G
m [ {i⇤1, i

⇤
2, . . . , i

⇤
j�1}) 

kX

j=1

�F (i
⇤
j |A

G
m) =

X

i2A⇤

�F (i|A
G
m). (2.28)

P
i2A⇤ �F (i|AG

m) is same as
P

i2A⇤\AG
m
�F (i|AG

m) because for any i in A
⇤
\ A

G
m,

�F (i|AG
m) = F (AG

m [ i)� F (AG
m) = F (AG

m)� F (AG
m) = 0.

Eq (2.25) holds because A
G
m+1 is built greedily from A

G
m by adding the element that

maximizes �F (i|AG
m). Eq (2.26) is true because |A

⇤
\ A

G
m|  k.

Thus,

F (A⇤)� F (AG
m)  k(F (AG

m+1)� F (AG
m)) (2.29)

= k(F (A⇤)� F (AG
m)� (F (A⇤)� F (AG

m+1))). (2.30)

Lets define �m = F (A⇤)� F (AG
m) then Eq (2.30) can be written as:

�m  k(�m � �m+1). (2.31)

This implies,

�m+1  (1�
1

k
)�m. (2.32)

Applying the above equation for m = 0 to k � 1,

�k  (1�
1

k
)k�0. (2.33)

�0 = F (A⇤)� F (;)  F (A⇤) since F is non-negative.

�k  (1�
1

k
)k�0  (1�

1

k
)kF (A⇤). (2.34)

Since 1� x  e�x for all x 2 R, we have

�k  e
�k
k F (A⇤). (2.35)

Since �k = F (A⇤)� F (AG),

F (AG) � (1� e�1)F (A⇤). (2.36)

4
i
⇤
0 is defined to be empty set.
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2.4. Submodular Function Maximization

The above theorem states the F (AG) is guaranteed to be more than 63% of F (A⇤),
in practice it frequently performs even better [Chen and Krause, 2013, Satsangi et al.,
2015a].

Lazy greedy maximization [Minoux, 1978] accelerates greedy maximization by prun-
ing elements whose marginal gain cannot be maximal by maintaining a priority queue of
all elements in which each element’s priority is its marginal gain computed in the previ-
ous iteration. If in the current iteration, the marginal gain of the element with the highest
priority is higher than the priority of the next element, then the current iteration is termi-
nated since submodularity guarantees that the marginal gain of the remaining elements
can only decrease. Lazy greedy maximization computes the same A

G as greedy maxi-
mization and is much faster in practice [Minoux, 1978].

Algorithm 2 stochastic-greedy-argmax(F, X , k, r)

A
S
 ;

for m = 1 to k do
R  a subset of size r obtained by sampling elements uniformly randomly from

X \ A
S

A
S
 A

S
[ argmaxi2R�F (i|AS)

end for
return A

S

Stochastic greedy maximization is even faster than greedy maximization as it samples
a subset R of size r from X in each iteration of greedy maximization and then selects the
element from R that maximizes the marginal gain. It computes a subset A

S by adding in
each iteration argmaxi2R�F (i|AS), where R is a subset of X \ A

S of size r. Mirza-
soleiman et al. [2015] showed that stochastic greedy maximization is also guaranteed to
have bounded error.

Theorem 2. [Mirzasoleiman et al., 2015] Let F be a non-negative, monotone and
submodular set function, F : 2X ! R+, A

⇤ = argmaxA2A+ F (A) and A
S =

stochastic-greedy-argmax(F, X , k, r) and let r = n
k log( 1

✏ ) then,

E[F (AS)] � (1� e�1
� ✏)F (A⇤). (2.37)
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3
Rewarding Certainty in POMDPs

POMDPs can model the dynamic and partially observable state, which is common to
many active perception problems. However, the aim of the agent in active perception
tasks is to reduce the uncertainty in its belief. The traditional POMDP framework allows
the reward to be expressed only as a function of the state and action and not as a function
of the belief. ⇢POMDP and POMDP-IR are two frameworks that make it possible to
model the reward function in POMDPs that reward agents to reduce the uncertainty in
its belief without breaking the PWLC property of the value function. ⇢POMDP starts
from a “true” belief-based reward function such as the negative entropy and then seeks to
find a PWLC approximation via a set of tangents to the curve. By contrast, POMDP-IR
starts from the queries that the user of the system will pose, e.g., “What is the position
of everyone in the room?” or “How many people are in the room” and creates prediction
actions that reward the agent for correctly answering such queries. However, the relative
pros and cons of these frameworks are not clear from the existing literature. To the best
of our knowledge no previous research has examined the relationship between these two
approaches, their respective pros and cons, or their efficacy in realistic tasks. In this
chapter, we address this by presenting a theoretical and empirical analysis of ⇢POMDP
and POMDP-IR.

First, we establish the relationship between these two frameworks by proving the
equivalence of ⇢POMDP and POMDP-IR. By equivalence of ⇢POMDP and POMDP-IR,
we mean that given a ⇢POMDP and a policy, we can construct a corresponding POMDP-
IR and a policy such that the value function for both the policies is exactly the same. This
equivalence shows that both POMDP-IR and ⇢POMDP are equally effective frameworks
to model active perception tasks. Furthermore, it shows that any result that holds for
⇢POMDP also holds for POMDP-IR and vice-versa. Next, we exploit the independence
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3. Rewarding Certainty in POMDPs

properties inherent in POMDP-IR to factorize the Bellman optimality equation thereby
reducing the computational cost of solving POMDP-IR and ⇢POMDP for active percep-
tion tasks. We give two algorithms that incorporate the factorization in the exact methods
and point-based methods for solving POMDP-IR [Satsangi et al., 2015b, 2017b].

Finally, we provide an extensive empirical analysis to establish the critical factors for
the performance of belief-based rewards for the active perception POMDPs on simulated
and real-world datasets. We also compare the performance of belief-based rewards to a
state based coverage reward that is a popular utility function for the sensor selection task.
Our results identify the cases where the belief-based rewards dominate the traditional
coverage based reward and also discusses the nature of the policies generated by the
different reward functions.

3.1 ⇢POMDP and POMDP-IR Equivalence

In this section we establish the equivalence between POMDP-IR and ⇢POMDP as men-
tioned before. We show this equivalence by starting with a ⇢POMDP and a policy and
introducing a reduction procedure for both ⇢POMDP and the policy (and vice-versa).
Using the reduction procedure, we reduce the ⇢POMDP to a POMDP-IR and the pol-
icy for ⇢POMDP to an equivalent policy for POMDP-IR. We then show that the value
function for the ⇢POMDP we started with and the reduced POMDP-IR is the same for
the given and the reduced policy. To complete our proof, we repeat the same process by
starting with a POMDP-IR and then reducing it to a ⇢POMDP. We show that the value
function for the POMDP-IR and the corresponding ⇢POMDP is the same.

To start with we first define the reduction procedure for reducing a given ⇢POMDP
to an ‘equivalent’ POMDP-IR:

Definition 1. Given a ⇢POMDP M⇢ = hS, A⇢,⌦, T⇢, O⇢,�⇢, b0, hi the REDUCE-
POMDP-⇢-IR(M⇢) produces a POMDP-IR MIR = hS, AIR,⌦, TIR, OIR, RIR, b0, hi via
the following procedure.

• The set of states, set of observations, initial belief and horizon remain unchanged.
Since the set of states remain unchanged, the set of all possible beliefs is also the
same for MIR and M⇢.

• The set of normal actions in MIR is equal to the set of actions in M⇢, i.e., An,IR =

A⇢.

• The set of prediction actions Ap,IR in MIR contains one prediction action for each
↵

ap
⇢ 2 �⇢. (ap on ↵ap

⇢ denotes the prediction action in Ap,IR that ↵ap
⇢ corresponds
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3.1. ⇢POMDP and POMDP-IR Equivalence

0 0.2 0.4 0.6 0.8 1
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

b(s1 )

N
e
g
a
ti
v
e
 b

e
li
e
f 
e
n
tr

o
p
y

Negative

belief

entropy

Alpha

vectors

as

tangents

Figure 3.1: Approximating belief-entropy with tangents for a POMDP with 2 states.
Each tangent can be viewed as the reward vector drawn by a corresponding prediction
action in an equivalent POMDP-IR. Here, the vectors are drawn at points b(s1) = 0.3
and b(s1) = 0.7

.

to.)

• The transition and observation functions in MIR behave the same as in M⇢ for
each an and ignore the ap, i.e., for all an 2 An,IR: TIR(s,an, s0) = T⇢(s,a, s0)

and OIR(s0,an, z) = O⇢(s0,a, z), where a 2 A⇢ corresponds to an (that is, they
are the same, a = an).

• The reward function in MIR is defined such that 8ap 2 Ap, RIR(s, ap) = ↵
ap
⇢ (s),

where ↵ap
⇢ is the ↵-vector corresponding to ap.

For example, consider a ⇢POMDP with 2 states, let ⇢ be defined using tangents to
belief entropy at b(s1) = 0.3 and b(s1) = 0.7. When reduced to a POMDP-IR, the
resulting reward function gives a small negative reward for correct predictions and a
larger one for incorrect predictions, with the magnitudes determined by the value of the
tangents when b(s1) = 0 and b(s1) = 1:

RIR(s, ap) =

8
<

:
�0.35, if s = ap

�1.21, otherwise.
(3.1)

This is illustrated in Figure 3.1.
Next we define the reduction procedure for reducing a policy for ⇢POMDP to a policy

for POMDP-IR.

Definition 2. Given a policy ⇡⇢ for a ⇢POMDP, M⇢, the REDUCE-POLICY-⇢-IR(⇡⇢)
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3. Rewarding Certainty in POMDPs

procedure produces a policy ⇡IR for a POMDP-IR as follows. For all b,

⇡IR(b) = h⇡⇢(b), argmax
ap

X

s

b(s)R(s, ap)i = h⇡
n
IR(b),⇡

p
IR(b)i. (3.2)

That is, ⇡IR selects the same normal action as ⇡⇢(b)(= ⇡n
IR(b)) and the prediction action

that maximizes the expected immediate reward.

Using these definitions, we prove that solving M⇢ is the same as solving MIR.

Theorem 3. Let M⇢ = hS, A⇢,⌦, T⇢, O⇢,�⇢, b0, hi be a ⇢POMDP, and ⇡⇢ an arbi-
trary policy for M⇢. Furthermore let MIR = REDUCE-POMDP-⇢-IR(M⇢) and ⇡IR =
REDUCE-POLICY-⇢-IR(⇡⇢). Then, for all b,

V IR
t (b) = V ⇢

t (b), (3.3)

where

V IR
t (b) = max

ap

X

s

b(s)RIR(s, ap) +
X

z

Pr(z|b,⇡n
IR(b))V

IR
t�1(b

⇡n
IR(b)

z ), (3.4)

is the t-step value function of policy ⇡IR in POMDP-IR MIR (let V IR
0 (b) =

maxap

P
s b(s)RIR(s, ap) for all b) and

V ⇢
t (b) = [⇢(b) +

X

z

Pr(z|b,⇡⇢(b))V
⇢
t�1(b

⇡⇢(b)
z )], (3.5)

is the t-step value function of policy ⇡⇢ in ⇢POMDP M⇢ (let V ⇢
0 (b) = ⇢(b) =

max↵2�⇢

P
s b(s)↵(s) for all b).

Proof. Proof in Appendix.

To complete the proof, we repeat the same procedure for reducing a POMDP-IR to a
⇢POMDP:

Definition 3. Given a POMDP-IR MIR = hS, AIR,⌦, TIR, OIR, RIR, b0, hi the
REDUCE-POMDP-IR-⇢(MIR) produces a ⇢POMDP M⇢ = hS, A⇢,⌦, T⇢, O⇢,�⇢, b0, hi

via the following procedure.

• The set of states, set of observations, initial belief and horizon remain unchanged.
Since the set of states remain unchanged, the set of all possible belief is also the
same for MIR and M⇢.
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3.1. ⇢POMDP and POMDP-IR Equivalence

• The set of actions in M⇢ is equal to the set of normal actions in MIR, i.e., A⇢ =

An,IR.

• The transition and observation functions in M⇢ behave the same as in MIR for
each an and ignore the ap, i.e., for all a 2 A⇢: T⇢(s,a, s0) = TIR(s,an, s0) and
O⇢(s0,a, z) = OIR(s0,an, z) where an 2 An,IR is the action corresponding to
a 2 A⇢ (that is, they are the same a = an).

• The �⇢ in M⇢ is defined such that, for each prediction action in Ap,IR,
there is a corresponding ↵ vector in �⇢, i.e., �⇢ = {↵

ap
⇢ (s) : ↵

ap
⇢ (s) =

R(s, ap) for each ap 2 Ap,IR}. Consequently, by definition, ⇢ is defined as:
⇢(b) = max↵

ap
⇢
[
P

s b(s)↵
ap
⇢ (s)].

Definition 4. Given a policy ⇡IR(b) = h⇡n
IR(b),⇡

p
IR(b)i = han, api for a POMDP-IR,

MIR, the REDUCE-POLICY-IR-⇢(⇡IR) procedure produces a policy ⇡⇢ for a ⇢POMDP
as follows. For all b,

⇡⇢(b) = ⇡n
IR(b). (3.6)

That is, ⇡⇢ takes the same action as the normal action in ⇡IR.

Theorem 4. Let MIR = hS, AIR,⌦, TIR, OIR, RIR, b0, hi be a POMDP-IR and
⇡IR(b) = h⇡n

IR(b),⇡
p
IR(b)i = han, api a policy for MIR, such that ⇡p

IR(b) = ap =

argmaxa0
p

P
s b(s)RIR(s, a0

p). Furthermore let M⇢ = REDUCE-POMDP-IR-⇢(MIR)

and ⇡⇢ = REDUCE-POLICY-IR-⇢(⇡IR). Then, for all b,

V ⇢
t (b) = V IR

t (b), (3.7)

where

V IR
t (b) = max

ap

X

s

b(s)RIR(s, ap) +
X

z

Pr(z|b,⇡n
IR(b))V

IR
t�1(b

⇡n
IR(b)

z ), (3.8)

is the value of following ⇡IR in MIR (let V IR
0 (b) = maxap

P
s b(s)RIR(s, ap) for all b)

and
V ⇢

t (b) = [⇢(b) +
X

z

Pr(z|b,⇡⇢(b))V
⇢
t�1(b

⇡⇢(b)
z )], (3.9)

is the value of following ⇡⇢ in M⇢ (let V ⇢
0 (b) = ⇢(b) = max↵2�⇢

P
s b(s)↵(s) for all

b).

Proof. Proof in Appendix.
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3. Rewarding Certainty in POMDPs

The main implication of these theorems is that any result that holds for either
⇢POMDP or POMDP-IR also holds for the other framework. For example, the results
presented in Theorem 4.3 in Araya-lópez et al. [2010] that bound the error in the value
function of ⇢POMDP also hold for POMDP-IR. Furthermore, with this equivalence, the
computational complexity of solving ⇢POMDP and POMDP-IR comes out to be the
same, since POMDP-IR can be converted into ⇢POMDP (and vice-versa) trivially, with-
out any significant blow-up in representation. Although we have proved the equivalence
of ⇢POMDP and POMDP-IR only for pure active perception task where the reward is
solely conditioned on the belief, it is straightforward to extend it to hybrid active per-
ception tasks, where the reward is conditioned both on belief and the state. Although,
the resulting active perception POMDP for sensor selection is such that the action does
not affect the state, the results from this section do not use that property at all and thus
are valid for active perception POMDPs where an agent might take an action which can
affect the state in the next time step.

In the next section we exploit the independence properties of POMDP-IR framework
to solve POMDP-IR efficiently.

3.2 Decomposed Maximization for POMDP-IR

The POMDP-IR framework enables us to formulate uncertainty as an objective, but it
does so at the cost of additional computation, as adding prediction actions enlarges the
action space. The computational complexity of performing a point-based backup for
solving POMDP-IR is O(|S|

2
|An||Ap||⌦||�t�1|)+O(|S||B||An||�t�1||⌦||Ap|). In this

section, we present a new technique that exploits the independence properties of the
POMDP-IR to reduce the computational costs. We also show that the same principle is
applicable to ⇢POMDPs.

The increased computational cost of solving POMDP-IR arises from the size of the
action space, |An||Ap|. However, as shown in Figure 3.2, prediction actions only af-
fect the reward function and normal actions only affect the observation and transition
function. We exploit this independence to decompose the maximization in the Bellman
optimality equation:

V ⇤
t (b) = max

han,api2A

hX

s

b(s)R(s, ap) +
X

z2⌦

Pr(z|an, b)V ⇤
t�1(b

an
z )

i

= max
ap2Ap

X

s

b(s)R(s, ap) + max
an2An

X

z2⌦

Pr(z|an, b)V ⇤
t�1(b

an
z )

(3.10)
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3.2. Decomposed Maximization for POMDP-IR
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Figure 3.2: Influence diagram for POMDP-IR, highlighting the independence between
normal actions and prediction actions.

3.2.1 Exact Methods

Exact methods cannot directly exploit the decomposition as they do not perform an ex-
plicit maximization. However, they can be made faster by separating the pruning steps
that they employ. First, we generate a set of vectors just for the prediction actions:
�R = {↵ap : ap 2 Ap}, where for all s 2 S,↵ap(s) = R(s, ap). Then, we gener-
ate another set of vectors for the normal actions, as in the standard exact solver:

�an,z
t = {↵an,z

i (s) : ↵i 2 �t�1},

↵an,z
i (s) =

X

s02S

T (s,an, s0)O(s0,an, z)↵i(s
0),

�an
t = �an,z1 � �an,z2 � . . .

(3.11)

Finally, we can compute the optimal set �t as follows:

�t = prune(prune(�R)� prune([an2An�
an
t )). (3.12)

This is essentially a special case of incremental pruning [Cassandra et al., 1997] made
possible due to the special structure of POMDP-IR. The independence properties enable
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3. Rewarding Certainty in POMDPs

the normal and the prediction actions to be treated separately. Thus, in turn allow us to
prune �R and �an

t separately resulting in faster pruning (because of smaller size) and
hence faster computation of the final �-set.

3.2.2 Point-based Methods

Point-based methods can exploit the decomposition by computing �a,z
t only for normal

actions, an and ↵ap only for prediction actions. That is, (2.12) can be changed to:

�an,z
t = {↵an,z

i : ↵i 2 �t�1}. (3.13)

For each prediction action, we compute the vector specifying the immediate reward for
performing the prediction action in each state: �Ap = {↵ap}, where ↵ap(s) = R(s, ap)

8 ap 2 Ap. The next step is to modify (2.13) to separately compute the vectors maxi-
mizing expected reward induced by prediction actions and the expected return induced
by the normal action:

↵an
b = argmax

↵ap2�Ap

X

s

b(s)↵ap(s) +
X

z

argmax
↵an,z2�an,z

t

X

s

↵an,z(s)b(s).

By decomposing the maximization, this approach avoids iterating over all |An||Ap|

joint actions. At each timestep t, this approach generates |An||⌦||�t�1|+ |Ap| backpro-
jections in O(|S|

2
|An||⌦||�t�1| + |S||Ap|) time and then prunes them to |B| vectors,

with a computational complexity of O(|S||B|(|Ap| + |An||�t�1||⌦|)).
The same principle can be applied to ⇢POMDP by changing (2.13) such that it max-

imizes over immediate reward independently from future return:

↵a
b = argmax

↵⇢2�⇢

X

s

b(s)↵⇢(s) +
X

z
argmax
↵a,z2�a,z

t

X

s

↵a,z(s)b(s). (3.14)

The computational complexity of solving ⇢POMDP with this approach is
O(|S|

2
|A||⌦||�t�1| + |S||�⇢|) + O(|S||B|(|�⇢| + |A||�t�1||⌦|). Thus, even though

both POMDP-IR and ⇢POMDP use extra actions or vectors to formulate belief-based
rewards, they can both be solved at only minimal additional computational cost.

3.3 Experiments

In this section, we present an analysis of the behaviour and performance of belief-based
rewards for active perception tasks. We present the results of experiments designed to
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n

Figure 3.3: Problem setup for the task of tracking one person. We model this task as a
POMDP with one state for each cell. Thus the person can move among |S| cells. Each
cell is adjacent to two other cells and each cell is monitored by a single camera. Thus,
in this case there are n = |S| cameras. The agent must select k out of n cameras and
the task is to predict the state of the person correctly using noisy observations from the
k cameras. There is one prediction action for each state and the agent gets a reward of
+1 if it correctly predicts the state and 0 otherwise. At each time step the agent can stay
in the same cell with a probability p or move to one of the neighboring cells with equal
probability. An observation is a vector of n observation features, each of which specifies
the person’s position as estimated by the given camera. If a camera is not selected, then
the corresponding observation feature has a value of null.
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3. Rewarding Certainty in POMDPs

study the effect on performance of the choice of prediction actions/tangents, and compare
the costs and benefits of myopic versus non-myopic planning. We consider the task of
tracking people in a surveillance area with a multi-camera tracking system as shown in
Figure 3.3. The goal of the system is to select a subset of cameras, to correctly predict the
position of people in the surveillance area, based on the observations received from the
selected cameras. In the following subsections, we present results on real-data collected
from a multi-camera system in a shopping mall..

We compare the performance of POMDP-IR with decomposed maximization to a
naive POMDP-IR that does not decompose the maximization. Thanks to Theorems 3
and 4, these approaches have performance equivalent to their ⇢POMDP counterparts.
We also compare against two baselines. The first is a weak baseline we call the rotate
policy in which the agent simply keeps switching between cameras on a turn-by-turn ba-
sis. The second is a stronger baseline we call the coverage policy, which was developed
in earlier work on active perception [Spaan, 2008, Spaan and Lima, 2009]. The cover-
age policy is obtained after solving a POMDP that rewards the agent for observing the
person, i.e., the agent is encouraged to select the cameras that are most likely to generate
positive observations. Thanks to the decomposed maximization, the computational cost
of solving for the coverage policy and belief-based rewards is the same.

3.3.1 Simulated Setting

We start with experiments conducted in a simulated setting, first considering the task
of tracking a single person with a multi-camera system and then considering the more
challenging task of tracking multiple people.

Single-Person Tracking

We start by considering the task of tracking one person walking in a grid-world composed
of |S| cells and n cameras as shown in Figure 3.3. At each timestep, the agent can select
only k cameras, where k  n. Each selected camera generates a noisy observation of
the person’s location. The agent’s goal is to minimize its uncertainty about the person’s
position. In the experiments in this section, we fixed k = 1 and n = 10. The problem
setup and the POMDP model is shown and described in Figure 3.3.

To compare the performance of POMDP-IR to the baselines, 100 trajectories were
simulated from the POMDP. The agent was asked to guess the person’s position at each
time step. Figure 3.4(a) shows the cumulative reward collected by all four methods.
POMDP-IR with decomposed maximization and naive POMDP-IR perform identically
as the lines indicating their respective performance lie on top of each other in figure
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Figure 3.4: (a) Performance comparison between POMDP-IR with decomposed max-
imization, naive POMDP-IR, coverage policy, and rotate policy; (b) Runtime compar-
ison between POMDP-IR with decomposed maximization and naive POMDP-IR; (c)
Behaviour of POMDP-IR policy; (d) Behaviour of coverage policy. (Best viewed in
color.)
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3. Rewarding Certainty in POMDPs

Figure 3.5: Performance comparison as negative belief entropy is better approximated.

3.4(a). However, Figure 3.4(b), which compares the runtimes of POMDP-IR with de-
composed maximization and naive POMDP-IR, shows that decomposed maximization
yields a large computational savings. Figure 3.4(a) also shows that POMDP-IR greatly
outperforms the rotate policy and modestly outperforms the coverage policy.

Figures 3.4(c) and 3.4(d) illustrate the qualitative difference between POMDP-IR and
the coverage policy. The blue lines mark the points in trajectory when the agent selected
the camera that observes the person’s location. If the agent selected a camera such that
the person’s location is not covered then the blue vertical line is not there at that point
in the trajectory in the figure. The agent has to select one out of n cameras and does
not have an option of not selecting any camera. The red line plots the max of the agent’s
belief. The main difference between the two policies is that once POMDP-IR gets a good
estimate of the state, it proactively observes neighbouring cells to which the person might
transition. This helps it to more quickly find the person when she moves. By contrast,
the coverage policy always looks at the cell where it believes her to be. Hence, it takes
longer to find her again when she moves. This is evidenced by the fluctuations in the max
of the belief, which often drops below 0.5 for the coverage policy but rarely does so for
POMDP-IR. The presence of false positives and negatives can also be seen in the figure,
when max of the belief goes down even though the agent selected the camera which can
observe the person’s location and in some cases even though the agent did not select the
camera which can observe the person’s location but still the max of belief shoots up.

Next, we examine the effect of approximating a true reward function like belief en-
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Figure 3.6: (top) Performance comparison for myopic vs. non myopic policies; (bottom)
Performance comparison for myopic vs non myopic policies in budget-based setting.

tropy with more and more tangents. Figure 2.3 illustrates how adding more tangents can
better approximate negative belief entropy. To test the effects of this, we measured the
cumulative reward when using between one and four tangents per state. Figure 3.5 shows
the results and demonstrates that, as more tangents are added, the performance in terms
of the true reward function improves. However, performance also quickly saturates, as
four tangents perform no better than three.

Next, we compare the performance of POMDP-IR to a myopic variant that seeks only
to maximize immediate reward, i.e., h = 1. We perform this comparison in three variants
of the task. In the mostly static variant, the state changes very slowly: the probability of
staying is the same state is 0.9. In the moderately dynamic variant, the state changes more
frequently, with a same-state transition probability of 0.7. In the highly dynamic variant,
the state changes rapidly (with a same-state transition probability of 0.5). Figure 3.6
(top) shows the results of these comparisons. In each setting, non-myopic POMDP-IR
outperforms myopic POMDP-IR. In the highly static variant, the difference is marginal.
However, as the task becomes more dynamic, the importance of look-ahead planning
grows. Because the myopic planner focuses only on immediate reward, it ignores the
increase in uncertainty in its belief when the state changes, which happens more often in
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3. Rewarding Certainty in POMDPs

dynamic settings.

We also compare the performance of myopic and non-myopic planning in a budget-
constrained environment. This specifically corresponds to an energy constrained envi-
ronment, where cameras can be employed only a few times over the entire trajectory.
This is augmented with resource constraints, so that the agent has to plan not only when
to use the camera, but also decide which camera to select. Specifically, the agent can
only employ the multi-camera system a total of 15 times across all 50 timesteps and the
agent can select which camera (out of the multi-camera system) to employ at each of the
15 instances. On the other timesteps, it must select an action that generates only a null
observation. Figure 3.6 (bottom) shows that non-myopic planning is of critical impor-
tance in this setting. Whereas myopic planning greedily consumes the budget as quickly
as possible, thus earning more reward in the beginning, non-myopic planning saves the
budget for situations in which it is highly uncertain about the state.

Finally, we compare the performance of myopic and non-myopic planning when the
multi-camera system can communicate with a mobile robot that also has sensors. This
setting is typical of a networked robot system [Spaan et al., 2015] in which a robot co-
ordinates with a multi-camera system to perform surveillance of a building, detect any
emergency situations like fire, or help people navigate to their destination. Here, the task
is to minimize uncertainty about the location of one person who is moving in the space
monitored by the robot and the cameras. The robot’s sensors are assumed to be more ac-
curate than the stationary cameras. Specifically, the sensors attached to robot can detect
if a person is in the current cell with 90% accuracy compared to the stationary cameras,
each of which has an accuracy of 75% of detecting a person in the cell it observes. The
robot’s sensor can observe the presence or absence of a person only for the cell that the
robot occupies. In addition to using its sensors to generate observations about its current
cell, the robot can also move forward or backward to an adjacent cell or choose to stay
at the current cell. To model this task, the action vector introduced earlier is augmented
with another action feature that indicates the direction of the robot’s motion, which can
take three values: forward, backward or stay.

Performance is quantified as the total number of times the correct location of the
person is predicted by the system. Figure 3.7, which shows the performance of myopic
and non-myopic policies for this task, demonstrates that non-myopic planning is able to
plan and utilize the accurate sensors more effectively than myopic planning.
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Figure 3.7: Performance comparison for myopic vs. non myopic policies when camera
system is assisting a moving robot.

Multi-Person Tracking

To extend our analysis to a more challenging problem, we consider a simulated setting in
which multiple people must be tracked simultaneously. Since |S| grows exponentially in
the number of people, the resulting POMDP quickly becomes intractable. Therefore, we
compute instead a factored value function

Vt(b) =
X

i

V i
t (b

i), (3.15)

where V i
t (b

i) is the value of the agent’s current belief bi about the i-th person. Thus,
V i

t (b
i) needs to be computed only once, by solving a POMDP of the same size as that

in the single-person setting. During action selection, Vt(b) is computed using the current
bi for each person. This kind of factorization corresponds to the assumption that each
person’s movement and observations is independent of that of other people. Although
violated in practice, such an assumption can nonetheless yield good approximations.

Figure 3.8 (top), which compares POMDP-IR to the coverage policy with one, two,
and three people, shows that the advantage of POMDP-IR grows substantially as the
number of people increases. Whereas POMDP-IR tries to maintain a good estimate of
everyone’s position, the coverage policy just tries to look at the cells where the maximum
number of people might be present, ignoring other cells completely.

Finally, we compare POMDP-IR and the coverage policy in a setting in which the
goal is only to reduce uncertainty about a set of “important cells” that are a subset of
the whole state space. For POMDP-IR, we prune the set of prediction actions to allow
predictions only about important cells. For the coverage policy, we reward the agent
only for observing people in important cells. The results, shown in Figure 3.8 (bottom),
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3. Rewarding Certainty in POMDPs

Figure 3.8: (top) Multi-person tracking performance for POMDP-IR and coverage pol-
icy; (bottom) Performance of POMDP-IR and coverage policy when only important cells
must be tracked.
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Figure 3.9: Sample tracks for all the cameras. Each color represents all the tracks ob-
served by a given camera. The boxes denote regions of high overlap between cameras.

demonstrate that the advantage of POMDP-IR over the coverage policy is even larger in
this variant of the task. POMDP-IR makes use of information coming from cells that
neighbour important cells (which is of critical importance if the important cells do not
have good observability), while the coverage policy does not. As before, the difference
gets larger as the number of people increases.

3.3.2 Real Data

Finally, we extended our analysis to a real-life dataset collected in a shopping mall. This
dataset was gathered over 4 hours using 13 CCTV cameras located in a shopping mall
[Bouma et al., 2013]. Each camera uses a FPDW [Dollár et al., 2010] pedestrian detector
to detect people in each camera image and in-camera tracking [Bouma et al., 2013] to
generate tracks of the detected people’s movements over time.

The dataset consists of 9915 tracks each specifying one person’s x-y position over
time. Figure 3.9 shows the sample tracks from all of the cameras.

To learn a POMDP model from the dataset, we divided the continuous space into
20 cells (|S| = 21: 20 cells plus an external state indicating the person has left the
shopping mall). Using the data, we learned a maximum-likelihood tabular transition
function. However, we did not have access to the ground truth of the observed tracks so
we constructed them using the overlapping regions of the camera.

Because the cameras have many overlapping regions (see Figure 3.9), we were able
to manually match tracks of the same person recorded individually by each camera. The
“ground truth” was then constructed by taking a weighted mean of the matched tracks.
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Figure 3.10: Performance of POMDP-IR and the coverage policy on the shopping mall
dataset.

Finally, this ground truth was used to estimate noise parameters for each cell (assuming
zero-mean Gaussian noise), which was used as the observation function. Figure 3.10
shows that, as before, POMDP-IR substantially outperforms the coverage policy for var-
ious numbers of cameras. In addition to the reasons mentioned before, the high overlap
between cameras contributes to POMDP-IR’s superior performance. The coverage pol-
icy has difficulty ascertaining people’s exact locations because it is rewarded only for
observing them somewhere in a camera’s large overlapping region, whereas POMDP-IR
is rewarded for deducing their exact locations.

3.4 Conclusions & Future Work

In this chapter we addressed the challenge of modelling active perception problems.
Since dynamic state and partial observability are common features of many active percep-
tion problems, POMDPs offer a good choice for modelling active perception problems.
The main challenge we addressed in this chapter is to express the belief-based rewards
in POMDPs without breaking the PWLC property of the value function. ⇢POMDP and
POMDP-IR are two frameworks that allow formulating uncertainty reduction as an end
in itself and do not break the PWLC property. We showed that ⇢POMDP and POMDP-IR
are two equivalent frameworks for modelling active perception task. Thus, results that ap-
ply to one framework are also applicable to the other. Furthermore, we showed that both
frameworks admit a decomposition of the maximization performed in the Bellman opti-
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mality equation, thereby, avoiding the additional computational cost due to the inflated
action space required to model belief-based rewards. Our empirical analysis established
the critical factors for good performance for active perception tasks. We showed that a
belief-based formulation of uncertainty reduction beats a corresponding popular state-
based reward baseline as well as other simple policies. While, the non-myopic policy
beats the myopic one, the gain in certain cases is marginal. However, in cases involving
mobile sensors and budget constraints, non-myopic policies become critically important.

An interesting point of difference between ⇢POMDP and POMDP-IR is in their rep-
resentation of the belief-based reward. ⇢POMDP approximates an explicit function of
the belief of the agent with tangent vectors, while POMDP-IR uses additional prediction
actions to reward low uncertainty. In cases where the belief of the agent is not explicitly
represented as in deep recurrent neural networks [Hausknecht and Stone, 2015], it is not
possible to measure the uncertainty in the belief of the agent directly. In Chapter 7 we
exploit this insight to propose a deep neural network architecture that enables an agent
to reduce its uncertainty without an explicit representation of its belief. Thanks to the
equivalence we establish we can be sure that the rewarding low uncertainty in belief of
the agent with prediction actions is the same as reducing the entropy of the agent’s belief.

In this chapter we considered only the pure active perception tasks where the agent
is rewarded solely for reducing the uncertainty in its belief. An interesting line of future
work would be to extend and experiment with hybrid tasks where the agent can serve
multiple-objectives, for example, maintaining surveillance at an airport while helping
the people at the airport navigate around. A big challenge for such setting would be to
balance the many objectives the agent can have to extract maximum utility.

The experiments in this chapter analyse the performance and behaviour of the belief-
based rewards in POMDPs. To this end, we assumed a simple model of the world where
the original state space was coarsely discretized, the agent was required to select only one
camera out of the n available cameras and simple tabular representations of the transition
and observations functions were used. In the next chapters we move to more realistic
settings. In Chapter 4 we propose a new POMDP planning method that scales much
better in the combinatorial action space of the active perception POMDP when an agent
is required to select multiple cameras out of the n available cameras. Chapter 5 focuses
on approximating continuous state and observation spaces with sample-based planning.
Chapter 6 focusses on real-time online decision making where the agent must select k

cameras out of the n available cameras in milliseconds.
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In the previous chapter we showed that POMDP-IR and ⇢POMDP are equivalent frame-
works to model the active perception tasks. Thus, now we can directly employ the tradi-
tional POMDP planners to compute the optimal value function for the active perception
POMDP. While point-based methods scale linearly in the size of the action space of a
POMDP, for the active perception POMDP the action space is made up of

�n
k

�
subsets

of sensors, thus, as the number of sensors n grows the computational cost of point-based
methods grows exponentially with it, making the use of traditional point-based methods
infeasible.

In this chapter we tackle of the problem of scaling the point-based methods to the
combinatorial action space of the active perception POMDP. By employing greedy maxi-
mization instead of full maximization we propose a new POMDP planning method called
greedy point-based value iteration [Satsangi et al., 2017b, 2014]. To analyse the theoret-
ical properties of greedy PBVI we exploit submodularity and show that if the value func-
tion of the active perception POMDP possess certain properties, mainly submodularity,
then the value function computed using the backups based on greedy maximization is
guaranteed to have bounded error with respect to the optimal value function. Further-
more, we establish the sufficient conditions for submodularity of the value functions for
the active perception POMDP. One of the sufficient conditions for the value function to
be submodular is that the immediate belief-based reward be defined as the negative belief
entropy. Since both POMDP-IR and ⇢POMDP approximate the negative belief entropy
by drawing tangents to the continuous curve, we extend our analysis to show that this
tangent-based approximation still keeps the error between the value function computed
by greedy PBVI and the optimal value function bounded.

Our definition of the active perception POMDP assumes that the state transition func-
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tion is independent of the actions of the agent. While this assumption might hold for the
sensor selection task, many active perception tasks involve mobile agents that by moving
can change the state of the world. Thus, for such active perceptions tasks the transition
function is not independent of the actions of the agent. Thus, we extend greedy PBVI
and its analysis to these general active perception tasks to show similar error bounds exist
even if the agent’s action can change the state of the world.

Finally, we model the sensor selection problem as an active perception POMDP and
use data recorded by a multi-camera tracking system in a shopping mall to learn the
POMDP model of the world. The experiments show that greedy PBVI achieves similar
performance to the traditional PBVI but at a fraction of the computational cost leading to
better scalability in the action space of the active perception POMDP. In the next sections
we introduce greedy PBVI and its analysis, followed by its extension to the general active
perception POMDPs and finally the experiments.

4.1 Greedy PBVI

In this section, we propose greedy PBVI, a new point-based planner for solving active
perception POMDPs which scales better in the size of its action space. To facilitate the
explication of greedy PBVI, we present the final step of PBVI, described earlier in (2.13),
(2.14) and (2.15), in a different way. For each b 2 B, and A 2 A

+, we must find the
best ↵A

b 2 �
A
t .

↵A,⇤
b = argmax

↵A
b 2�A

t

X

s

↵A
b (s)b(s), (4.1)

and simultaneously record its value Q(b, A) =
P

s ↵
A,⇤
b (s)b(s). Then, for each b we

find the best vector across all actions: ↵b = ↵A⇤

b , where

A
⇤ = argmax

A2A+

Q(b, A). (4.2)

The main idea of greedy PBVI is to exploit greedy maximization [Nemhauser et al.,
1978], which is much faster than full maximization as it avoids going over the

�n
k

�
choices

and instead constructs a subset of k elements iteratively. Thus, we replace the maximiza-
tion operator in the Bellman optimality equation with greedy maximization. Algorithm
1 in Chapter 2 shows the argmax variant, which constructs a subset A

G
✓ X of size k

by iteratively adding sensors from X to A
G. At each iteration, it adds the element that

maximally increases marginal gain �Q(i|A) of adding a sensor i to a subset of sensors
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A
G:

�Q(i|A) = Q(b, i [A)�Q(b, A). (4.3)

To exploit greedy maximization in PBVI, we need to replace the argmax over A
+

with greedy-argmax. Our alternative description of PBVI above makes this straightfor-
ward: (4.2) contains such an argmax and Q(b, .) has been intentionally formulated to be
a set function over A

+. Thus, implementing greedy PBVI requires only replacing (4.2)
with:

A
G = greedy-argmax(Q(b, ·), A+, k). (4.4)

Since the complexity of greedy-argmax is only O(|n||k|), the complexity of greedy
PBVI is only O(|S||B||n||k||�t�1||⌦|) (for computing �At ).

Using point-based methods as a starting point is essential to our approach. Algo-
rithms like Monahan’s enumeration algorithm [Monahan, 1982] that rely on pruning op-
erations to compute V ⇤ instead of performing an explicit argmax, cannot directly use
greedy-argmax. Thus, it is precisely because PBVI operates on a finite set of beliefs
that argmax is performed, opening the door to using greedy-argmax instead.

In the next subsection we show that the value function computed by greedy PBVI is
guaranteed to have bounded error with respect to the optimal value function under certain
conditions.

4.1.1 Bounds given submodular value function

In this subsection, we present the theoretical analysis of greedy PBVI, which shows that,
under certain conditions, the most important of which is submodularity, the error in the
value function computed by backups based on greedy maximization is bounded. Later
subsections discuss when a reward based on negative belief entropy or an approximation
thereof meets those conditions.

Submodularity is a property of set functions that corresponds to diminishing returns,
i.e., adding an element to a set increases the value of the set function by a smaller or equal
amount than adding that same element to a subset. In our notation, this is formalized as
follows. The set function Q⇡

t (b, A) is submodular in A, if for every AM ✓ AN ✓ A
+

and i 2 A
+

\ AN ,
�Qb(i|AM ) � �Qb(i|AN ), (4.5)

where �Qb(i|A) = Q⇡
t (b, A [ {i}) � Q⇡

t (b, A) is the marginal gain of adding i to A.
Equivalently, Q⇡

t (b, A) is submodular if for every AM , AN ✓ A
+,

Q⇡
t (b, AM \AN ) + Q⇡

t (b, AM [AN )  Q⇡
t (b, AM ) + Q⇡

t (b, AN ). (4.6)
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Submodularity is an important property because of the following result by
[Nemhauser et al., 1978]:

Theorem 5. Let M = hS, A+,⌦, T, O, ⇢, b0, hi be an active perception POMDP. Let ⇡
denote a policy that maps beliefs to actions in A

+, ⇡(b) = A. Let Q⇡
t (b, A) be the t-step

value function for following a policy ⇡, that is,

Q⇡
t (b, A) = ⇢(b) +

X

z2⌦

Pr(z|b, A)V ⇡
t�1(b

A
z ), (4.7)

where V ⇡
t�1(b) is the value of belief b at t� 1 time steps to go, given recursively by:

V ⇡
t�1(b) = ⇢(b) +

X

z2⌦

Pr(z|b,⇡(b))V ⇡
t�2(b

⇡(b)
z ), (4.8)

and V ⇡
0 (b) = ⇢(b).

If Q⇡
t (b, A) is non-negative, monotone and submodular in A, then

Q⇡
t (b, A

G) � (1� e�1)Q⇡
t (b, A

⇤), (4.9)

where A
G = greedy-argmax(Q⇡

t (b, ·), A
+, k) and A

⇤ = argmaxA2A+ Q⇡
t (b, A), and

A
+ = {A ✓ X : |A|  k}, and X = {1, 2, . . . , n} is the set of n sensors.

However, Theorem 5 gives a bound only for a single application of greedy-argmax,
not for applying it within each backup, as greedy PBVI does. In this section, we establish
such a bound. Let the greedy Bellman operator BG be:

(BGVt�1)(b) =
G

max
A

[⇢(b) +
X

z2⌦

Pr(z|A, b)Vt�1(b
A
z )], (4.10)

where maxG
A refers to greedy maximization. This immediately implies the following

corollary to Theorem 5:

Corollary 1. Let M = hS, A+,⌦, T, O, ⇢, b0, hi be an active perception POMDP.
Let ⇡ denote a policy that maps beliefs to actions in A

+, ⇡(b) = A, where A
+ =

{A ✓ X : |A|  k} and X = {1, 2, . . . , n} denotes the set of n sensors. Let
Q⇡

t (b, A) be the t-step value function for following a policy ⇡, that is, Q⇡
t (b, A) =

⇢(b) +
P

z2⌦ Pr(z|b, A)V ⇡
t�1(b

A
z ), where V ⇡

t�1(b) is the value of belief b at t � 1 time
steps to go, given recursively by:

V ⇡
t�1(b) = ⇢(b) +

X

z2⌦

Pr(z|b,⇡(b))V ⇡
t�2(b

⇡(b)
z ), (4.11)
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4.1. Greedy PBVI

and V ⇡
0 (b) = ⇢(b).

If Q⇡
t (b, A) is non-negative, monotone, and submodular in A, then,

(BGV ⇡
t�1)(b) � (1� e�1)(B⇤V ⇡

t�1)(b). (4.12)

Proof. From Theorem 5 since (BGV ⇡
t�1)(b) = maxG

A[⇢(b) +
P

z2⌦ Pr(z|A, b)V ⇡
t�1(b

A
z )] = Q⇡

t (b, A
G) and (B⇤V ⇡

t�1)(b) = maxA[⇢(b) +
P

z2⌦ Pr(z|A, b)V ⇤
t�1(b

A
z )] = Q⇡

t (b, A
⇤). Here maxG

A denote greedy maximization
over A.

In addition, we can prove that the error in the value function remains bounded after
application of BG.

Lemma 1. Let M = hS, A+,⌦, T, O, ⇢, b0, hi be an active perception POMDP. Let ⇡ be
a policy that maps beliefs to actions in A

+, ⇡(b) = A, where A
+ = {A ✓ X : |A|  k}

and X = {1, 2, . . . , n} denotes the set of n sensors. Let Q⇡
t (b, A) be the t-step value

function for following a policy ⇡, that is, Q⇡
t (b, A) = ⇢(b)+

P
z2⌦ Pr(z|b, A)V ⇡

t�1(b
A
z ),

where V ⇡
t�1(b) is the value of belief b at t� 1 time steps to go , given recursively by:

V ⇡
t�1(b) = ⇢(b) +

X

z2⌦

Pr(z|b,⇡(b))V ⇡
t�2(b

⇡(b)
z ), (4.13)

and V ⇡
0 = ⇢(b).

If, for all b, ⇢(b) � 0 and,

V ⇡
t�1(b) � (1� ✏)V ⇤

t�1(b), (4.14)

and if Q⇡
t (b, A) is non-negative, monotone, and submodular in A then, for ✏ 2 [0, 1],

(BGV ⇡
t�1)(b) � (1� e�1)(1� ✏)(BGV ⇤

t�1)(b), (4.15)

where V ⇤
t�1 denotes the optimal value function, given by V ⇤

t�1(b) = maxA2A+ [⇢(b) +
P

z Pr(z|b, A)V ⇤
t�2(b

A
z )].

Proof. Starting from (4.14) and, for a given A, on both sides taking the expectation over
z, and adding ⇢(b) (since ⇢(b) � 0 and ✏  1):

⇢(b) + Ez|b,A[V
⇡
t�1(b

A
z )] � (1� ✏)(⇢(b) + Ez|b,A[V

⇤
t�1(b

A
z )]).
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4. Point-Based Planning

From the definition of Q⇡
t , we thus have:

Q⇡
t (b, A) � (1� ✏)Q⇤

t (b, A). (4.16)

From Theorem 5, we know, if Q⇡
t (b, A) is non-negative, monotone and submodular then,

Q⇡
t (b, A

G
⇡ ) � (1� e�1)Q⇡

t (b, A
⇤
⇡), (4.17)

where A
G
⇡ = greedy-argmax(Q⇡

t (b, ·), A
+, k) and A

⇤
⇡ = argmaxA Q⇡

t (b, A). Since
Q⇡

t (b, A
⇤
⇡) � Q⇡

t (b, A) for any A,

Q⇡
t (b, A

G
⇡ ) � (1� e�1)Q⇡

t (b, A
G
⇤ ), (4.18)

where A
G
⇤ = greedy-argmax(Q⇤

t (b, ·), A
+, k). Finally, let A be A

G
⇤ in (4.16) which

implies that Q⇡
t (b, A

G
⇤ ) � (1� ✏)Q⇤

t (b, A
G
⇤ ), so:

Q⇡
t (b, A

G
⇡ ) � (1� e�1)(1� ✏)Q⇤

t (b, A
G
⇤ ) (4.19)

Q⇡
t (b, A

G
⇡ ) is the same as BGV ⇡

t�1(b) = maxG
A[⇢(b) +

P
z2⌦ Pr(z|A, b)Vt�1(bAz )] =

Q⇡
t (b, A

G
⇡ ). Applying the same equations with ⇡ = ⇡⇤ (optimal policy), we get

(BGV ⇤
t�1)(b) = Q⇤

t (b, A
G
⇤ ). Thus,

(BGV ⇡
t�1)(b) � (1� e�1)(1� ✏)(BGV ⇤

t�1)(b). (4.20)

Next, we define the greedy Bellman equation: V G
t (b) = (BGV G

t�1)(b), where V G
0 =

⇢(b). Note that V G
t is the true value function obtained by greedy maximization, without

any point-based approximations. Using Corollary 1 and Lemma 1, we can bound the
error of V G with respect to V ⇤.

Theorem 6. Let M = hS, A+,⌦, T, O, ⇢, b0, hi be an active perception POMDP. Let ⇡
be a policy that maps beliefs to actions in A

+, ⇡(b) = A, where A
+ = {A ✓ X : |A| 

k} and X = {1, 2, . . . , n} denotes the set of n sensors. Let Q⇡
t (b, A) be the t-step value

function for following a policy ⇡, that is, Q⇡
t (b, A) = ⇢(b)+

P
z2⌦ Pr(z|b, A)V ⇡

t�1(b
A
z ),

where V ⇡
t�1(b) is the value of belief b at t� 1 time steps to go, given recursively by:

V ⇡
t�1(b) = ⇢(b) +

X

z2⌦

Pr(z|b,⇡(b))V ⇡
t�2(b

⇡(b)
z ), (4.21)
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4.1. Greedy PBVI

and V ⇡
0 = ⇢(b).

If, for all b, ⇢(b) � 0 and if, for all policies ⇡, beliefs, b and t, Q⇡
t (b, A) is non-

negative, monotone and submodular in A, then for all b,

V G
t (b) � (1� e�1)2tV ⇤

t (b). (4.22)

Proof. By induction on t. The base case, t = 0, holds because V G
0 (b) = ⇢(b) = V ⇤

0 (b).

In the inductive step, for all b, we assume that

V G
t�1(b) � (1� e�1)2t�2V ⇤

t�1(b), (4.23)

and must show that
V G

t (b) � (1� e�1)2tV ⇤
t (b). (4.24)

Lemma 1 says that for ✏ 2 [0, 1], if Q⇡
t (b, A) is non-negative, monotone and sub-

modular and if ⇢(b) � 0 for all b then

(BGV ⇡
t�1)(b) � (1� e�1)(1� ✏)(BGV ⇤

t�1)(b). (4.25)

Thus, applying Lemma 1 with V ⇡
t�1 = V G

t�1, and (1� ✏) = (1� e�1)2t�2 (and since
the statement of the Theorem states that if Q⇡

t (b, A) is non-negative, monotone and sub-
modular for all ⇡, t, thus, since QG

t (b, A) is non-negative, monotone and submodular),

(BGV G
t�1)(b) � (1� e�1)(1� e�1)2t�2(BGV ⇤

t�1)(b) (4.26)

V G
t (b) � (1� e�1)2t�1(BGV ⇤

t�1)(b). (4.27)

Eq. (4.27) follows because BGV G
t�1(b) is V G

t (b) by definition.

According to Corollary 1, if Q⇡
t (b, A) is non-negative, monotone and submodular

then:
(BGV ⇡

t�1)(b) � (1� e�1)(B⇤V ⇡
t�1)(b). (4.28)

Applying Corollary 1 with V ⇡
t�1 = V ⇤

t�1 (and assuming Q⇤
t (b, A) is non-negative,

monotone and submodular) we get,

(BGV ⇤
t�1)(b) � (1� e�1)(B⇤V ⇤

t�1)(b). (4.29)

Using (4.29) and (4.27), we get,

55



4. Point-Based Planning

V G
t (b) � (1� e�1)2t�1(1� e�1)(B⇤V ⇤

t�1)(b)

V G
t (b) � (1� e�1)2tV ⇤

t (b).
(4.30)

Theorem 6 extends Nemhauser’s result to a full sequential decision making setting
where multiple applications of greedy maximization are employed over multiple time
steps. This theorem gives a theoretical guarantee on the performance of greedy PBVI.
Given a POMDP with a submodular value function, greedy PBVI is guaranteed to have
bounded error with respect to the optimal value function. Moreover, this performance
comes at a computational cost that is much less than that of solving the same POMDP
with traditional solvers. Thus, greedy PBVI scales much better in the size of the action
space of active perception POMDPs, while still retaining bounded error.

The results presented in this subsection are applicable only if the value function for a
POMDP is submodular. In the following subsections, we establish the submodularity of
value function for active perception POMDP under certain conditions.

4.1.2 Submodularity of value functions

In this subsection, we establish the sufficient conditions for the submodularity of the
value function of the active perception POMDP. Specifically, we show that, when using
negative belief entropy as the immediate belief-based reward, i.e., ⇢(b) = �(Hb(s) +

log( 1
|S| )), then under certain conditions Q⇡

t (b, A) is submodular as required by Theorem
6. Please note that the additional term log( 1

|S| ) is only required (and sufficient) to guar-
antee non-negativity, but is independent of the actual beliefs or actions. For the sake of
conciseness, in the remainder of this thesis we will omit this term. We start by observing
that: Q⇡

t (b, A) = ⇢(b)+
Pt�1

j=1 G⇡
j (b

t, At), where G⇡
j (b

t, At) is the expected immediate
reward with j steps to go, conditioned on the belief and action with t steps to go and
assuming policy ⇡ is followed in between t and j:

G⇡
j (b

t, At) =
X

zt:j
Pr(zt:j

|bt, At,⇡)(�Hbj (s
j)). (4.31)

where zt:j is a vector of observations received in the interval from t steps to j steps to
go, bt is the belief at t steps to go, A

t is the action taken at t steps to go, and ⇢(bj) =

�Hbj (s
j), where sj is the state at j steps to go.

Proving that Q⇡
t (b, A) is submodular in A requires three steps. First, we show that
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4.1. Greedy PBVI

G⇡
j (b

t, At) equals the conditional entropy of bj over sj given zt:j . Second, we show
that, under certain conditions, conditional entropy is a submodular set function. Third,
we combine these two results to show that Q⇡

t (b, A) is submodular.
The conditional entropy [Cover and Thomas, 1991] of a distribution b over s given

some observations z is defined as:

Hb(s|z) = �
X

z

Pr(z|b, A)HbAz
(s) (4.32)

Thus, conditional entropy is the expected entropy given z has been observed but
marginalizing across the values it can take on. Equivalently, conditional entropy is also
defined as:

Hb(s|z) = �
X

s

X

z

Pr(s, z|b, A) log(
Pr(s, z|b, A)

Pr(z|b, A)
) (4.33)

Lemma 2. Let M = hS, A+,⌦, T, O, ⇢, b0, hi be an active perception POMDP. Let ⇡ be
a policy that maps beliefs to actions in A

+, ⇡(b) = A, where A
+ = {A ✓ X : |A|  k}

and X = {1, 2, . . . , n} denotes the set of n sensors. Let bt and A
t denote the belief and

action at t time steps to go. If the immediate belief-based reward ⇢ in M is defined as the
negative belief entropy, that is, ⇢(b) = �Hb(s) then the expected reward at j(< t) time
steps to go, as a consequence of taking action A

t in belief bt and following policy ⇡ in
between the time interval t to j equals the negative discounted conditional entropy of bj

over sj given zt:j:

G⇡
j (b

t, At) =
X

zt:j
Pr(zt:j

|bt, At,⇡)(�Hbj (s
j)) = �Hbj (s

j
|zt:j). (4.34)

Here bj is the belief at j time steps to go, sj denote the hidden state at j time steps to
go and zt:j denote the sequence of observations that can be obtained in between the time
interval from t to j.

Proof. Proof in Appendix.

Next, we identify the conditions under which G⇡
j (b

t, At) is submodular in A
t. We

use the set equivalent Z of z since submodularity is a property of set functions. Thus:

G⇡
j (b

t, At) = �Hbj (s|Z
t:j), (4.35)

where Z
t:j is a set of observation features observed between t and j time steps to go. The

key condition sufficient for submodularity of G⇡
j (b

t, At) is conditional independence
[Krause and Guestrin, 2005b].
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4. Point-Based Planning

Definition 5. The observation set Z = {z1, z2, . . . zn} is conditionally independent
given s if any pair of observation features (or variables) zi, zj in Z are conditionally
independent given the hidden state s, i.e.,

Pr(zi, zj |s) = Pr(zi|s) Pr(zj |s), 8zi, zj 2 Z. (4.36)

Lemma 3. Let Z = {z1, z2, . . . zn} be the set of all observation features about a hidden
variable s. If Z is conditionally independent given s then�H(s|Z) is submodular in Z ,
i.e., for any two observations set ZM , ZN ✓ Z ,

H(s|ZM [ ZN ) + H(s|ZM \ ZN ) � H(s|ZM ) + H(s|ZN ). (4.37)

Proof. Proof in Appendix.

Lemma 4. Let M = hS, A+,⌦, T, O, ⇢, b0, hi be an active perception POMDP. Let ⇡
be a policy that maps beliefs to actions in A

+, ⇡(b) = A, where A
+ = {A ✓ X :

|A|  k} and X = {1, 2, . . . , n} denotes the set of n sensors. Let bt and A
t denote the

belief and action at t time steps to go. Let Z
t:j = {zt

1, z
t
2, . . . , z

t
n, zt�1

1 , zt�1
2 , . . . , zj

n}

be the set of observation features that can be obtained between the time interval from
t to j. If the immediate belief-based reward ⇢ in M is defined as the negative belief
entropy, that is, ⇢(b) = �Hb(s), and if Z

t:j is conditionally independent given sj , then
G⇡

j (b
t, At) = �Hbj (s

j
|Z

t:j) is submodular in A
t
8 ⇡. Here bj is the belief at j time

steps to go, sj denote the hidden state at j time steps to go.

Proof. Proof in Appendix.

Now we can establish the submodularity of Q⇡
t .

Theorem 7. Let M = hS, A+,⌦, T, O, ⇢, b0, hi be an active perception POMDP. Let ⇡
be a policy that maps beliefs to actions in A

+, ⇡(b) = A, where A
+ = {A ✓ X : |A| 

k} and X = {1, 2, . . . , n} denotes the set of n sensors. Let bt and A
t denote the belief

and action at t time steps to go. Let Z
t:j = {zt

1, z
t
2, . . . , z

t
n, zt�1

1 , zt�1
2 , . . . , zj

n} be the
set of observation features that can be obtained between the time interval from t to j. If
the immediate belief-based reward ⇢ in M is defined as the negative belief entropy, that
is, ⇢(b) = �Hb(s), and if Z

t:j is conditionally independent given sj for all j, 1 < j < t,
then Q⇡

t (b, A) = Q⇡
t (b

t, At) = ⇢(b) +
Pt�1

j=1 G⇡
j (b

t, At) is submodular in A, for all ⇡.

Proof. ⇢(b) is trivially submodular in A because it is independent of A. Furthermore,
Lemma 4 shows that G⇡

j (b
t, At) is submodular in A

t, for all (or any) ⇡. Since a positively
weighted sum of submodular functions is also submodular [Krause and Golovin, 2014],
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4.1. Greedy PBVI

this implies that
Pt�1

j=1 G⇡
j (b

t, At) and thus Q⇡
t (b, A) are also submodular in A for all

⇡.

While the conditional independence of Z
j given sj is easy to satisfy, the conditional

independence of Z
t:j , a whole sequence of observations, given sj is more difficult. For

Z
t:j to be conditionally independent given sj , sj must contain enough information to

predict the past sequence of states st:j . One way to achieve this is by defining sj such that
it encodes all the information in the state history that is correlated with the observations
Z

t:j . Unfortunately, this typically is not practical to do unless the transition function
is deterministic and invertible. However, note that the conditions required by Theorem
7 are only sufficient, not necessary, conditions for the value function to be submodular.
An important goal for future work is thus to identify weaker conditions for establishing
submodularity of value functions based on belief entropy or other belief-based reward
functions. Figure 4.1 shows that for a simulated setting even if the state of the world
is changing the increase in expected immediate reward (entropy in this case) still shows
the notion of diminishing returns as more and more observations are made. The same
figure (bottom plot) shows the expected increase in value function Q⇡

t (b, A) as the size
of A increases. Finally, we show in the Experiments section, greedy PBVI performs well
in practice on real-world data for which the conditions in Theorem 7 might not hold,
which suggests that establishing submodularity under weaker conditions may indeed be
possible.

While Theorem 7 shows that Q⇡
t (b, A) is submodular, Theorem 6 also requires that

it be monotone, which we now establish:

Lemma 5. Let M = hS, A+,⌦, T, O, ⇢, b0, hi be an active perception POMDP. Let
⇡ be a policy that maps beliefs to actions in A

+, ⇡(b) = A, , where A
+ = {A ✓

X : |A|  k} and X = {1, 2, . . . , n} denotes the set of n sensors. Let Q⇡
t (b, A) =

⇢(b) +
P

z2⌦ Pr(z|b, A)V ⇡
t�1(b

A
z ) be the t-step action value function of policy ⇡. If

V ⇡
t�1(b

0) is a convex function of b0, then Q⇡
t (b, A) is monotone in A, i.e., for all b and

AM ✓ AN (AM , AN 2 A
+), Q⇡

t (b, AM )  Q⇡
t (b, AN ).

Proof. Proof in Appendix.

Tying together our results so far:

Theorem 8. Let M = hS, A+,⌦, T, O, ⇢, b0, hi be an active perception POMDP. Let ⇡
be a policy that maps beliefs b to actions A in A

+, ⇡(b) = A, , where A
+ = {A ✓ X :

|A|  k} and X = {1, 2, . . . , n} denotes the set of n sensors.
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4. Point-Based Planning

Figure 4.1: The figure shows the average (averaged over more than 20000 runs) increase
in the expected immediate reward and the value function in a simulated setting (Chapter
3, Figure 3.3), for an agent that follows random policy for the sensor selection task.
The top figure shows the increase in the expected immediate reward as more and more
observations are added (randomly) when the state is static (the person is not moving),
the middle figure shows the increase in the expected immediate reward when the state is
changing, the bottom figure shows the increase in the value function (sum of expected
reward over the next 3 time steps), as more and more observations are added at the
first time step. Even as the state of the world changes in the simulated setting no large
deviation from submodularity of the value function was observed.
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4.1. Greedy PBVI

• If the set of observation features that can be obtained between the time interval t

and j, Z
t:j = {zt

1, z
t
2, . . . , z

t
n, zt�1

1 , . . . zj
n} is conditionally independent given sj ,

for all j(1 < j < t), and

• if ⇢(b) = �(Hb(s) + log( 1
|S| )), and

• if V ⇡
t (b) is convex in b for all ⇡, t, where V ⇡

t is the value function for policy ⇡,
given recursively by:

V ⇡
t (b) = ⇢(b) +

X

z2⌦

Pr(z|b,⇡(b))V ⇡
t�1(b

⇡(b)
z ), (4.38)

and V ⇡
0 = ⇢(b),

then for all b,
V G

t (b) � (1� e�1)2tV ⇤
t (b), (4.39)

where V G
t = maxG

A2A+ [⇢(b)+
P

z2⌦ Pr(z|b, A)V ⇡
t�1(b

A
z )], maxG denotes greedy max-

imization (Algorithm 1), that returns A
G build greedily by iteratively adding elements out

of X = {1, 2, . . . , n}, and V ⇤
t denote the value function for the optimal policy.

Proof. Follows from Theorem 6, given Q⇡
t (b, A) = [⇢(b)+

P
z2⌦ Pr(z|b, A)V ⇡

t�1(b
A
z )]

is non-negative, monotone and submodular for all ⇡. For ⇢(b) = �(Hb(s)+ log( 1
|S| )), it

is easy to see that Q⇡
t (b, A) is non-negative, since maximum value of Hb(s) is� log( 1

|S| )

[Cover and Thomas, 1991] and Q⇡
t (b, A) is a positive sum of ⇢(bt) at different time steps

t. Theorem 7 showed that Q⇡
t (b, A) is submodular if ⇢(b) = �Hb(s) and if Z

t:j is
conditionally independent given sj . The monotonicity of Q⇡

t (b, A) follows from Lemma
5 if V ⇡

t (b) is convex in b for all ⇡, t.

As discussed earlier, (below Theorem 7) the conditional independence of Z
t:j given

sj is difficult to meet in real-life. Only if sj is modelled such that it contains all the
information of the state history then such a condition might be true. However, this is
a sufficient condition and not a necessary one and we hope to relax this condition in
future. Also, V ⇡

t is not guaranteed to be convex for all ⇡. Both these conditions can
be relaxed in future as a quick look to the proof of Theorem 6 reveals that ideally, only
QG

t (b, A) and Q⇤
t (b, A) are required to be monotone and submodular (for all t). Now,

V ⇤
t (b) is convex in b but V G

t (b) is not necessarily convex in b. However, note that V G
t is

the value function that is without the point-based approximation. In practice, the value
function greedy PBVI returns, is represented as a set of vectors and the policy that is
executed using this value function involves taking a maximization over the dot product
of the given belief and the set of vectors (Figure 4.2). Thus, to relax this condition, in
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4. Point-Based Planning

b5b4b3b2b1

Figure 4.2: Figure explaining the working of greedy PBVI for a 2-state POMDP (x-axis
is the belief space). The black circles denote the value of the belief computed by greedy
PBVI. The figure also shows a case where the black circles can be (inter/extra)-polated
so that it eventually leads to a non-convex value function. However, point-based meth-
ods return a set of ↵-vectors, one for each belief that is sampled. The final policy that is
executed by an agent takes the maximum (or argmax to get the action that projects the
vector with highest value for a belief) over these ↵ vectors and thus even if greedy maxi-
mization computes sub-optimal actions as shown in figure, the executed policy might still
have higher value than the one suggested by greedy maximization. The figure also shows
that because of a final maximization over all alpha vectors the resulting value function
turns out to be convex.
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4.1. Greedy PBVI

addition to the greedy operator an extra operator can be introduced that represents V G
t

as the upper surface of a set of vectors and hence a convex function. Figure 4.2 explains
the good performance of greedy PBVI as observed in the Experiment section, since the
policy executed using the value function obtained from greedy PBVI has a value that is
greater that the current definition of V G

t (b).

In this subsection we showed that if the immediate belief-based reward ⇢(b) is defined
as negative belief entropy, then the value function of an active perception POMDP is
guaranteed to be submodular under certain conditions. However, as mentioned earlier, to
solve active perception POMDP, we approximate the belief entropy with vector tangents.
This might interfere with the submodularity of the value function. In the next subsection,
we show that, even though the PWLC approximation of belief entropy might interfere
with the submodularity of the value function, the value function computed by greedy
PBVI is still guaranteed to have bounded error.

4.1.3 Bounds given approximated belief entropy

While Theorem 8 bounds the error in V G
t (b), it does so only on the condition that ⇢(b) =

�(Hb(s) + log( 1
|S| )). However, as discussed earlier, our definition of active perception

POMDPs instead defines ⇢ using a set of vectors �⇢ = {↵⇢
1, . . . ,↵

⇢
|B|}, each of which is

a tangent to �Hb(s), as suggested by Araya-lópez et al. [2010], in order to preserve the
PWLC property. While this can interfere with the submodularity of Q⇡

t (b, A), here we
show that the error generated by this approximation is still bounded in this case.

Let ⇢̃(b) = max↵2�⇢

P
s b(s)↵(s) denote the PWLC approximated entropy and Ṽ ⇤

t

denote the optimal value function when using a PWLC approximation to negative entropy
for the belief-based reward, i.e.,

Ṽ ⇤
t (b) = max

A
[⇢̃(b) +

X

z2⌦

Pr(z|b, A)Ṽ ⇤
t�1(b

A
z )]. (4.40)

Araya-lópez et al. [2010] showed that, if ⇢(b) satisfies the ↵-Hölder condition [Gilbarg
and Trudinger, 2001], a generalization of the Lipschitz condition, then the following
relation holds between V ⇤

t and Ṽ ⇤
t :

||V ⇤
t � Ṽ ⇤

t ||1  C�↵, (4.41)

where V ⇤
t is the optimal value function, C is a constant and �B = minb2⇤ maxb02B ||b�

b0||1 is the density of the set of belief points B at which tangent are drawn to the belief
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4. Point-Based Planning

entropy and ⇤ is the belief simplex1.
Let Ṽ G

t (b) be the value function computed with greedy Bellman equation when im-
mediate belief-based reward is ⇢̃(b):

Ṽ G
t (b) =

G
max
A

[⇢̃(b) +
X

z2⌦

Pr(z|b, A)Ṽ G
t�1(b

A
z )], (4.43)

then the error between Ṽ G
t (b) and V ⇤

t (b) = maxA[⇢(b)+
P

z2⌦ Pr(z|b, A)V ⇤
t�1(b

A
z )] is

bounded as stated in the following theorem.

Theorem 9. Let M = hS, A+,⌦, T, O, ⇢, b0, hi be an active perception POMDP. Let ⇡
be a policy that maps beliefs b to actions A in A

+, ⇡(b) = A. Let the true immediate
belief-based reward be negative belief entropy ⇢(b) = �(Hb(s) + log( 1

|S| )). Let �⇢ =

{↵⇢
1, . . . ,↵

⇢
|B|} be a set of |B| |S|-dimensional tangent planes to ⇢(b) at |B| belief points

where B is the set of belief points at which tangents (|S|-dimensional plane) are drawn
to ⇢(b). For all beliefs, the error between Ṽ G

t (b) and V ⇤
t (b) is bounded, if Z

t:j =

{zt
1, z

t
2, . . . , z

t�1
1 , . . . zj

n} is conditionally independent given sj for all j, if ⇢(b) satisfies
the ↵-Hölder condition and if V ⇡

t (b) is convex in b for all ⇡.

Proof. To prove this theorem we first argue that the error between

Ṽ ⇡
t (b) = [⇢̃(b) +

X

z2⌦

Pr(z|b,⇡(b))Ṽ ⇡
t�1(b

⇡(b)
z )], (4.44)

and
V ⇡

t (b) = [⇢(b) +
X

z2⌦

Pr(z|b,⇡(b))V ⇡
t�1(b

⇡(b)
z )], (4.45)

is bounded for all b and ⇡: Theorem 4.3 in Araya-López et. al., 2010 shows that the
error between ⇢(b) and ⇢̃(b) is bounded by C�↵

B (if ⇢ is convex and satisfies the ↵-Holder
condition). We assume ⇢(b) = �(Hb(s) + log( 1

|S| )) satisfies the ↵-Holder condition
(more details on this can be found in Araya-lópez et al. [2010]) for some ↵. Here C

is a scalar constant and �B is the density of the set of belief points B at which tangents
hyperplanes are drawn to approximate ⇢. Specifically, �B = minb2⇤ maxb02B ||b�b0||1,
where ⇤ is the belief simplex. Since for any policy ⇡ and for a finite horizon h, Ṽ ⇡

t (b) is
the sum of expected ⇢̃(bt) obtained at each step, (each of which has bounded error with

1More concretely, Araya-lópez et al. [2010] showed that

||V ⇤
t � Ṽ

⇤
t ||1 

C�
↵

1� �
, (4.42)

where � is a discount factor in an infinite horizon POMDP (or ⇢POMDP). We include the 1 � � into the
constant term because we consider a finite horizon setting and thus do not have a formal � defined.
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4.2. General Active Perception POMDPs

the true ⇢(bt)), the error between Ṽ ⇡
t (b) and V ⇡

t (b) is bounded by C�↵
B for some constant

C. Mathematically,

V ⇡
t (b) = E[

t�1X

j=0

⇢(bj)|⇡]

 E[
t�1X

j=0

(⇢̃(bj) + C�↵
B)|⇡]

= Ṽ ⇡
t (b) + hC�↵

B .

(4.46)

Earlier, Theorem 8 showed

V G
t (b) � (1� e�1)2tV ⇤

t (b) 8 b, (4.47)

if ⇢(b) = �(Hb(s) + log( 1
|S| )) and if Z

t:j is conditionally independent given sj and if
V ⇡

t (b) is convex in b for all ⇡.
We just argued that, V ⇡

t (b)  Ṽ ⇡
t (b) + hC�↵

B 8 b,⇡. This implies,

V G
t (b)  Ṽ G

t (b) + hC�↵
B 8 b. (4.48)

Since V G
t (b) � (1� e�1)2tV ⇤

t (b) 8 b,

Ṽ G
t (b) � (1� e�1)2tV ⇤

t (b)� hC�↵
B 8 b. (4.49)

In this subsection we showed that if the negative entropy is approximated using tan-
gent vectors, greedy PBVI still computes a value function that has bounded error. In the
next subsection we outline how greedy PBVI can be extended to general active percep-
tion tasks.

4.2 General Active Perception POMDPs

The results presented in the previous section apply to a subclass of active perception
POMDPs in which the evolution of state over time is independent of the actions of the
agent. Here, we outline how these results can be extended to general active perception
POMDPs without many changes. The main application for such an extension is in tasks
involving a mobile robot coordinating with sensors to intelligently take actions to per-
ceive its environment. In such cases, the robot’s actions, by causing it to move, can
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4. Point-Based Planning

change the state of the world.
The algorithms we proposed can be extended to such settings by making small modi-

fications to the greedy maximization operator. The greedy algorithm can be run for k+1

iterations and in each iteration the algorithm would choose to add either a sensor (only
if fewer than k sensors have been selected), or a movement action (if none has been se-
lected so far). Formally, using the work of Fisher et al. [1978], which extends that of
Nemhauser et al. [1978] on submodularity to combinatorial structures such as matroids.

Definition 6. (Matroid) A matroid M = (V, I) is a finite ground set V together with I ,
that is a collection of subsets of V , called independent sets such that:

• if a set B 2 I and A ✓ B, then A 2 I

• if A 2 I, B 2 I and |A|  |B| then there exists a i 2 B \ A such that A [ i 2 I .

Fischer et. al. showed that greedy maximization of a submodular function F subject
to matroid constraints, that is, maxA2I F (A) (or even subject to the constraints that is
intersection of multiple matroids) returns a constant factor approximation to the optimal
value.

The action space of a POMDP involving a mobile robot can be modelled as a partition
matroid (or as an intersection of multiple matroids) and greedy maximization subject to
matroid constraints [Fisher et al., 1978] can be used to maximize the value function
approximately. Below we describe this extension in detail for the case where a mobile
robot coordinates with a deployed set of sensors to maintain surveillance in a shopping
mall.

Definition 7. (Partition Matroid) P = (V, I) is a partition matroid in which V is parti-
tioned into l disjoint sets A1, A2, . . . , Al and

I = {A ✓ V : |A \Ai|  ki 8 i = 1, 2, . . . , l}, (4.50)

for some given parameters k1, k2 . . . kl.

To model the active perception POMDP for the case where a mobile robot (mounted
with its own sensors) is interacting with a set of fixed sensors we make the following
main changes:

• Actions a = ha1 . . . an, astay, aleft, aright, atop, abottomi are modelled as vectors
of m = n + 5 action features, the first n of which are binary action features
each of which specify whether a given sensor is selected or not (assuming n sen-
sors). The last 5 action features, specify the action chosen for the movement of
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4.2. General Active Perception POMDPs

the mobile robot. Since for the case of mobile sensors, the constraints on the
agent is more complicated than just selecting k out of n, we take help of par-
tition matroids to model the action space of the agent. A is defined as before
A = {i : ai = 1 _ i  n}, i.e., the set of indices of the selected sensors and
M = {stay, left, right, top, bottom}, i.e., the set of all possible actions for the
mobile sensor to move. A

+ is the same as before, i.e., the set of sensor subsets
of size k or less, A

+ = {A : |A|  k}. The agent can select only one action
out of M, and it is denoted by Am, Am ⇢ M : |Am| = 1. As stated before,
X = {1, . . . , n} indicates the set of all sensors.

Using the definition of partition matroids, we can define the action space of above
POMDP as a partition matroid, P = (V, I) where V = X ⇥M and

I = {a ✓ V : |a \ X|  k ^ |a \M|  1} (4.51)

• Observations z = hz1 . . . zN , zn+1i are modelled as vectors of n + 1 observation
features, first n of which specifies the sensor reading obtained by the given sensor
and the zn+1 specifies the observation from the mobile sensor. If sensor i is not
selected, then zi = ;. The set equivalent of z is Z = {zi : zi 6= ;}. To prevent
ambiguity about which sensor generated which observation in Z , we assume that,
for all i and j, the domains of zi and zj share only ;.

Algorithm 3 greedy-argmaxM(Q, V, I, k)

aG
 ;.

for m = 1 to k + 1 do
aG
 aG

[ {argmaxi/2aG:aG[{i}2I �Q(i|aG)}
end for
return aG

A simple and cheap greedy heuristic for maximizing Q subject to the partition ma-
troid constraint is as described in algorithm 3. Algorithm 3 in each iteration adds either
a sensor (only if fewer than k sensors have been selected) or a movement action (if none
has been selected so far). Greedy PBVI can be modified accordingly to incorporate
the greedy heuristic by modifying (4.2) with aG = greedy-argmaxM(Q, V, I, K). The
greedy operator under matroid constraint can be defined as:

(BMV ⇡
t�1)(b) =

M
max
a2I

[⇢(b, a) +
X

z2⌦

Pr(z|a, b)V ⇡
t�1(b

a
z )], (4.52)
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4. Point-Based Planning

where maxM
a refers to the greedy maximization subject to matroid constraints.

Thus, we can extend our analysis from section 4.1.1 to mobile sensor active percep-
tion POMDP.

Theorem 10. (Fisher et. al.) Let M = hS, M,⌦, T, O, ⇢, b0, hi be an active perception
POMDP where M = (V, I) is a matroid. Let ⇡ be a policy that maps beliefs to actions
in I , ⇡(b) = a. Let Q⇡

t (b, a) be the t-step value function for following policy ⇡, that is,
Q⇡

t (b, a) = ⇢(b) +
P

z2⌦ Pr(z|b, a)V ⇡
t�1(b

a
z), where V ⇡

t�1 is value function of policy ⇡
given recursively by:

V ⇡
t�1(b) = [⇢(b) +

X

z2⌦

Pr(z|b,⇡(b))V (b⇡(b)
z )], (4.53)

and V ⇡
0 (b) = ⇢(b). If Q⇡

t (b, a) is non-negative, monotone and submodular in a, then

Q⇡
t (b, a

G) �
1

2
max
a02I

Q⇡
t (b, a

0), (4.54)

where aG = greedy-argmaxM(Q⇡
t (b, ·), V, I, K).

Proof. Follows from Theorem 2.1 in Fisher et al. [1978].

Corollary 2. Let M = hS, M,⌦, T, O, ⇢, b0, hi be an active perception POMDP, where
M = (V, I) is a matroid. Let ⇡ be a policy that maps beliefs to actions in I , ⇡(b) = a.
Let Q⇡

t (b, a) be the t-step value function for following policy ⇡, that is, Q⇡
t (b, a) = ⇢(b)+

P
z2⌦ Pr(z|b, a)V ⇡

t�1(b
a
z). Given any policy ⇡, if Q⇡

t (b, a) is non-negative, monotone,
and submodular in a, then for all b,

(BMV ⇡
t�1)(b) �

1

2
(B⇤V ⇡

t�1)(b). (4.55)

Proof. Follows from Theorem 10.

Lemma 6. Let M = hS, M,⌦, T, O, ⇢, b0, hi be an active perception POMDP, where
M = (V, I) is a matroid. Let ⇡ be a policy that maps beliefs to actions in I , ⇡(b) = a.
Let Q⇡

t (b, a) be the t-step value function for following policy ⇡, that is, Q⇡
t (b, a) =

⇢(b) +
P

z2⌦ Pr(z|b, a)V ⇡
t�1(b

a
z). If for all b, ⇢(b) � 0,

V ⇡
t (b) � (1� ✏)V ⇤

t (b), (4.56)

and Q⇡
t (b, a) is non-negative, monotone, and submodular then, for ✏ 2 [0, 1],

(BMV ⇡
t )(b) � (

1

2
)(1� ✏)(BMV ⇤

t )(b). (4.57)
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Proof. Proof in Appendix.

Theorem 11. Let M = hS, M,⌦, T, O, ⇢, b0, hi be an active perception POMDP where
M is a matroid. Let ⇡ be a policy that maps beliefs to actions in I , ⇡(b) = a. Let
Q⇡

t (b, a) be the t-step value function for following policy ⇡, that is, Q⇡
t (b, a) = ⇢(b) +

P
z2⌦ Pr(z|b, a)V ⇡

t�1(b
a
z). If for all policies ⇡, Q⇡

t (b, a) is non-negative, monotone and
submodular in a, then for all b,

V G
t (b) � (

1

2
)2tV ⇤

t (b). (4.58)

Proof. Proof in Appendix.

While it is not necessary that the action space of an active perception POMDP sat-
isfies the matroid constraints, however, even for constraints that involves an intersection
over p different matroid greedy heuristic still guarantees a constant factor approximation
[Fisher et al., 1978].

In this section, we extend our analysis to active perception tasks involving mobile
sensors. We show if the value function is submodular then, backups based on greedy
maximization subject to matroid constraints is guaranteed to compute a value function
which has bounded error with respect to the optimal value function.

4.3 Experiments

To empirically evaluate greedy PBVI, we tested it on the problem of tracking either one
or multiple people using a multi-camera system. The problem was extracted from the
shopping mall dataset described in the experiments section of Chapter 3.

To address the blow-up in the size of the state space for multi-person tracking, we
use a variant of transfer planning [Oliehoek et al., 2013]. We divide the multi-person
problem into several source problems, one for each person, and solve them independently
to compute Vt(b) =

P
V i(bi), where V i(bi) is the value of the current belief bi about the

i-th person’s location. Thus V i
t (bi) only needs to be computed once, by solving POMDP

of the same size as that in the single-person setting. During action selection, Vt(b) is
computed using the current bi for each person.

To learn a POMDP model from the dataset, we divided the continuous space into
20 cells (|S| = 21: 20 cells plus an external state indicating the person has left the
shopping mall). Using the data, we learned a maximum-likelihood tabular transition
function. However, we did not have access to the ground truth of the observed tracks so
we constructed them using the overlapping regions of the camera.
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Figure 4.3: Runtimes for the different methods.

The reward function is described as a set of |S| vectors, �⇢ = {↵1 . . .↵|S|}, with
↵i(s) = 1 if s = i and ↵i(s) = 0 otherwise. The initial belief is uniform across all
states. We planned for horizon h = 10.

As baselines, we tested against regular PBVI and myopic versions of both greedy and
regular PBVI that compute a policy assuming h = 1 and use it at each time step. Figure
4.3 shows runtimes under different values of n and k. Since multi-person tracking uses
the value function obtained by solving a single-person POMDP, single and multi-person
tracking have the same runtimes. These results demonstrate that greedy PBVI requires
only a fraction of the computational cost of regular PBVI. In addition, the difference
in the runtime grows quickly as the action space gets larger: for n = 5 and k = 2

greedy PBVI is twice as fast, while for n = 11, k = 3 it is approximately nine times
as fast. Thus, greedy PBVI enables much better scalability in the action space. Figure
4.4, which shows the cumulative reward under different values of n and k for single-
person (top) and multi-person (bottom) tracking, verifies that greedy PBVI’s speed-up
does not come at the expense of performance, as greedy PBVI accumulates nearly as
much reward as regular PBVI. They also show that both PBVI and greedy PBVI benefit
from non-myopic planning. While the performance advantage of non-myopic planning
is relatively modest, it increases with the number of cameras and people, which suggests
that non-myopic planning is important to making active perception scalable.

Furthermore, an analysis of the resulting policies showed that myopic and non-
myopic policies differ qualitatively. A myopic policy, in order to minimize uncertainty in
the next step, tends to look where it believes the person to be. By contrast, a non-myopic
policy tends to pro-actively look where the person might go next, so as to more quickly
detect her new location when she moves. Consequently, non-myopic policies exhibit less
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Figure 4.4: Cumulative reward for single-person (top) and multi-person (bottom) track-
ing.

fluctuation in belief and accumulate more reward, as illustrated in Figure 4.5. The blue
lines mark when the agent chooses the camera that can observe the cell occupied by the
person. The red line plots the max of the agent’s belief. The difference in fluctuation in
belief is evident, as the max of the belief often drops below 0.5 for the myopic policy but
rarely does so for the non-myopic policy.

4.4 Conclusions & Future Work

In this chapter, we addressed the problem of scaling the POMDP planning in the combi-
natorial action space of the active perception POMDP. We modelled the action space of
the active perception POMDP as selecting k out of n sensors, where k is the maximum
number of sensors allowed by the resource constraints. Recent POMDP solvers enable
scalability in the state space. However, for active perception, as the number of sensors
grow, the action space grows exponentially. We proposed greedy PBVI, a POMDP plan-
ning method, that improves scalability in the action space of a POMDP. While we do
not directly address the scaling in the observation space, we believe recent ideas on fac-
torization of observation space [Veiga et al., 2014] can be combined with our approach
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Figure 4.5: Behaviour of myopic vs. non-myopic policy.

to improve scalability in state, action and observation space to solve active perception
POMDPs.

By exploiting the theory of submodularity, we showed that the value function com-
puted by greedy PBVI is guaranteed to have bounded error. Specifically, we extend
Nemhauser’s result on greedy maximization of submodular functions to long-term plan-
ning. To apply these results to the active perception task, we showed that under certain
conditions the value function of an active perception POMDP is submodular. One such
condition requires that the future series of observations be independent of each other
given the state. While this is a strong condition, it is only a sufficient condition and may
not be a necessary one. Thus, one line of future work is to attempt to relax this condition
for proving the submodularity of the value function. Finally, we showed that, even with
a PWLC approximation to the true value function, which is submodular, the error in the
value function computed by greedy PBVI remains bounded, thus enabling us to compute
efficiently value functions for active perception POMDP.

Greedy PBVI is ideally suited for active perception POMDPs for which the value
function is submodular. However, in real-life situations submodularity of the value func-
tion might not always hold. For example, in our setting when there is occlusion, it is
possible for combinations of sensors that when selected together yield higher utility than
the sum of their utilities when selected individually. Similar cases can arise when mobile
robots are trying to sense the best point of view to observe a scene that is occluded. Thus
in cases like this, greedy PBVI might not return the best solution.

Our empirical analysis established that the non-myopic policy beats the myopic one,
the gain in certain cases is marginal. However, in cases involving mobile sensors and
budgeted constraints, non-myopic policies become critically important. Finally, exper-
iments on a real-world dataset showed that the performance of greedy PBVI is similar
to the existing methods but requires only a fraction of the computational cost, leading to
much better scalability for solving active perception tasks.
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In the previous chapter we proved that the value function of the active perception POMDP
is submodular if the immediate belief-based reward is defined as the negative belief en-
tropy. The experiments showed that if the state of the world is independent of the actions
of the agent then the gain of the non-myopic planning is only marginal. Thus, in this
chapter we focus on greedy maximization for submodular function maximization. We
start with a small background on greedy maximization for submodular function maxi-
mization, followed by why the state-of-the-art methods are not directly applicable for
large real world active perception problems, the main algorithm we propose, its analysis
and finally the experiments.

The role of greedy maximization for maximizing submodular functions is pivotal.
Greedy maximization has a lower computational cost than full maximization and in prac-
tice is observed to perform almost as well. However, for many large real-world prob-
lems, even greedy maximization can be too computationally expensive [Mirzasoleiman
et al., 2015]. To accelerate greedy maximization Minoux [1978] proposed lazy greedy
maximization which prunes elements whose marginal gains on the last iteration ensures
that their marginal gains on the current iteration cannot be maximal. Stochastic greedy
maximization [Mirzasoleiman et al., 2015] provides further speed-ups by evaluating the
marginal gains only of a randomly sampled subset of elements at each iteration. Other
variations [Wei et al., 2014, Badanidiyuru and Vondrák, 2014] also aim to minimize the
number of marginal gain computations.

However, these methods assume it is computationally feasible to exactly compute
the function being maximized and thus the marginal gain. In many settings, the exact
computation of the submodular function is not possible; instead the algorithm has access
only to the noisy estimates of the function being maximized [Singla et al., 2016, Satsangi
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et al., 2016b]. For example, in the sensor selection, the agent selects a subset of sensors
such that it maximizes the negative conditional entropy over the position of a person
in a shopping mall or airport. Computing conditional entropy involves an expectation
over the entropy of the posterior beliefs about the hidden state. When surveilling large
areas like shopping malls, exactly computing the entropy of a single posterior belief
becomes infeasible, let alone an expectation over them. In fact, even maintaining an
exact probability distribution over a person’s position in an airport or shopping mall is
not possible; thus, even computing the exact true entropies of the posterior beliefs is not
possible in such settings.

Thus, in this chapter, we present a new algorithm called probably approximately cor-
rect greedy maximization [Satsangi et al., 2016a,b] for submodular function maximiza-
tion. Rather than assuming access to a submodular function Q itself, we assume access
only to confidence bounds on Q. In particular, we assume that these bounds are cheaper
to compute than Q and are anytime, i.e., we can tighten them by spending more computa-
tion time, e.g., by generating additional samples. Inspired by lazy greedy maximization,
our method uses confidence bounds to prune elements, thereby avoiding the need to fur-
ther tighten their bounds. Furthermore, we provide a PAC analysis [Valiant, 2013] that
shows that, with high probability, our method returns an approximately optimal set.

Given an unbiased estimator of Q, it is possible to use concentration inequalities
like Hoeffding’s inequality [Hoeffding, 1963] to obtain the confidence bounds needed by
PAC greedy maximization. Unfortunately, many applications, such as sensor placement
and decision tree induction, require information-theoretic definitions of Q such as infor-
mation gain, negative conditional entropy, etc. These definitions depend on computing
entropies over posterior beliefs, which are difficult to estimate in an unbiased way, espe-
cially without supplementary computations [Paninski, 2003]. The absence of an unbiased
estimator renders Hoeffding’s inequality inapplicable and makes it hard to obtain com-
putationally cheap confidence bounds on conditional entropy [Nowozin, 2012a, Loh and
Nowozin, 2013]. Therefore, we propose novel, cheap confidence bounds on conditional
entropy.

Finally, we apply PAC greedy maximization with these new confidence bounds for
the sensor selection to track people in a shopping mall. Our empirical results demonstrate
that our approach performs comparably to greedy and stochastic greedy maximization,
but at a fraction of the computational cost, leading to much better scalability.
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5.1 Problem Setting

We consider a variation on submodular function maximization in which evaluating the
submodular function Q, and therefore the marginal gain, is prohibitively expensive, ren-
dering greedy and lazy greedy maximization (and other variants) inapplicable. Instead,
we assume access to computationally cheap confidence bounds on Q stated in following
assumption:

Assumption 1. We assume access to anytime upper and lower confidence bounds on
Q(A) and a tighten(A, t) procedure that for all A 2 A

+ that takes in as input ar-
guments A and t (t is a positive integer) and returns Ut(A) and Lt(A) such that with
probability 1� �l

nt(t+1) , Lt(A)  Q(A) and with probability 1� �u
nt(t+1) , Ut(A) � Q(A),

for some fixed value of �l and �u. Also, we assume that the lower and upper confidence
bounds Lt and Ut are monotonically increasing and decreasing respectively, that is,
Lt  Lt0 and Ut � Ut0 for t0 > t. (Here n is the size of X = {1, 2, . . . , n} and A is a
subset of X of size less than or equal to k. )

These assumptions are satisfied in many settings where Q is too expensive to compute
exactly. For example, if Q(A) = E[X|A] for some random variable X , then Q̂(A) =
1
N (

PN
i=1 xi), where the xi’s are i.i.d. samples of X , is an unbiased estimator of Q̂(A) for

which Ut and Lt can easily be constructed using, e.g., Hoeffding’s inequality. According
to Hoeffding’s inequality for xi 2 [0, 1],

Pr(|Q(A)� E[Q̂(A)]| � ✏)  2e(�2✏2N). (5.1)

Using Hoeffding’s inequality, Lt and Ut can be constructed as: with probability 1 �
�l

t(t+1) , Lt(A) = Q̂(A) �
q

1
2N log( 2t(t+1)

�l
)  Q(A) is true and that with probability

1 � �u
t(t+1) , Ut(A) = Q̂(A) +

q
1

2N log( 2t(t+1)
�u

) � Q(A). Furthermore, tighten
procedure can tighten these lower and upper bounds by spending more computation,
thereby, using more samples (higher N ) to compute Q̂. However, we specifically do
not assume access to an unbiased estimator of Q. Instead, we seek an algorithm that
performs submodular function maximization given only Ut, Lt, and tighten.

The absence of a computationally cheap unbiased estimator of Q arises in many
settings, especially in the active perception tasks in which Q is defined using information-
theoretic metrics such as information gain or negative conditional entropy. For example,
in the sensor selection task, the agent must select a subset of sensors A of size k from a
set of n available sensors, X = {1, 2, . . . , n} such that it minimizes the uncertainty in the
belief b of the agent. Formally, the submodular function Q in this case is the information
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gain (G) of selecting a subset of sensors:

G(A) = Hb(s)�
X

z2⌦

Pr(z|b, A)HbAz
(s), (5.2)

where ⌦ is the set of all possible values of observation z that can come from sensors
present in the set A and HbAz

(s) is the entropy of posterior belief obtained after selecting
A and observing z. Since Hb(s) is independent of A, we omit it for the rest of this
chapter (Hb(s) is necessary for G to be non-negative) and define Q(A) as:

Q(A) = �
X

z2⌦

Pr(z|b, A)HbAz
(s). (5.3)

Unfortunately, when there are many possible states and actions, maintaining an exact
belief over s is intractable, which in turn, makes computing HbAz

(s) intractable. More-
over, HbAz

(s) is not just intractable but it is also difficult to efficiently estimate [Paninski,
2003, Nowozin, 2012a, Schürmann, 2004]. Since Q cannot be exactly computed (espe-
cially without paying an extra computational cost), greedy maximization is not applicable
any more.

Therefore, in the next section we propose a new fundamentally different method that
requires only Ut, Lt, and tighten. To solve sensor selection in particular, we also need
cheap anytime implementations of Ut and Lt for conditional entropy, which we propose
in Section 5.4.

5.2 PAC Greedy Maximization

In this section, we propose probably approximately correct greedy maximization, which
enables an agent to perform submodular function maximization without ever computing
Q exactly. The main idea is to use U and L to prune elements that with high probability
do not maximize marginal gain.

Our approach is inspired by lazy greedy maximization. To see how, it is helpful
to view lazy greedy maximization (also described in Chapter 2) as a pruning method
that in each iteration maintains a priority queue of elements with their marginal gains
on the previous iteration as their priorities and by terminating an iteration before the
priority queue is empty it effectively prunes each element whose upper bound (given
by its marginal gain on the previous iteration) is lower than the maximum lower bound
(given by the best marginal gain found so far on the current iteration).

PAC greedy maximization generalizes this idea in two ways. First, it accepts arbi-
trary upper and lower bounds. This makes it possible to replace the bounds used by
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lazy greedy maximization, which rely on the exact computation of marginal gain, with
cheaper ones. Second, it uses confidence bounds instead of hard bounds. By tolerating
a small probability of error, our approach can prune more aggressively, enabling large
speed-ups while maintaining a PAC bound.

Algorithm 4 pac-greedy-max(tighten, X , k, ✏1)

A
P
 ;

for m = 1 to k do
A

P
 A

P
[ pac-max(tighten, X , AP , ✏1)

end for
return A

P

Algorithm 4 shows the main loop, which simply adds at each iteration the element
selected by the pac-max subroutine. The role of pac-max is to return an element iP such
that it is ✏-optimal with probability 1 � (�l + �u). Algorithm 5 shows this subroutine.
In each iteration of the outer while loop, pac-max examines each of these elements and
prunes it if its upper bound is not at least ✏1 greater than the max lower bound found so
far. In addition, the element with the max lower bound is never pruned. If an element is
not pruned, then its bounds are tightened. Algorithm 5 terminates when only one element
remains.

Algorithm 5 is the closest to the algorithm Hoeffding’s races, presented in Maron and
Moore [1994, 1997] except that Maron and Moore [1994, 1997] propose explicitly to use
Hoeffding’s inequality to compute and tighten the upper and lower confidence bound1.
Consequently, the analysis and convergence of the algorithms that they present are reliant
on the application of Hoeffding’s inequality and, thus, are applicable only for functions
that can be estimated in an unbiased manner. This is in contrast to Algorithm 5 and its
analysis that is given in the later section, both of which do not make any assumption on
the way in which the upper and lower confidence bounds are generated or tightened.

5.3 PAC Bounds

In this section, we analyze PAC greedy maximization. With oracle access to Q, greedy
maximization is guaranteed to find A

G such that Q(AG) � (1 � e�1)Q(A⇤), if Q is
monotone, non-negative and submodular [Nemhauser et al., 1978]. Since PAC greedy
maximization does not assume oracle access to Q and instead works with cheap anytime

1The other minute differences between pac-max and Hoeffding’s races are (a) the use of priority queue in
pac-max, and (b) that Hoeffding’s races do(es) not explicitly take into account the number of times tighten
procedure was previously called as an input parameter to the tighten procedure.
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Algorithm 5 pac-max(tighten, X , AP , ✏1)

1: . Input: pac-max takes as input access to tighten procedure; X = {1, 2, . . . , n}

original set of n elements; A
P a subset of X , in this case, A

P is the partial solution
maintained by pac-greedy-max, ✏ a positive real number.

2: iP  0 . element with max lower bound
3: ⇢ empty priority queue
4: t 0 . t is the iteration number.

5: t = t + 1
6: for i 2 X \ A

P do
7: Ut(i), Lt(i) tighten(AP

[ i, t) . Here Ut(i) and Lt(i)
8: denote the upper and lower
9: bound on Q(AP

[ i).
10: For conciseness, Ut(i) and Lt(i) denote
11: Ut(AP

[ i) and Lt(AP
[ i) respectively.

12: ⇢.enqueue(i, Ut(i)) . initial priority
13: iP  argmaxj2{i,iP } Lt(j) . Element with maximum lower bound
14: end for
15: while (⇢.length() > 1) do
16: ⇢0  empty priority queue
17: t = t + 1
18: iP -in-queue = True . Set flag to check if iP is still in ⇢
19: while ¬⇢.empty() do
20: i ⇢.dequeue() . Element with maximum upper bound
21: if i = iP then . Check if iP is still in ⇢
22: iP -in-queue = False
23: end if
24: if (i = iP ) _ (Ut(i) � Lt(iP ) + ✏1) then
25: . Prune i that does not have
26: upper bound that is ✏ greater than Lt(iP )
27: otherwise call tighten procedure for i.

28: Ut(i), Lt(i) tighten(AP
[ i, t)

29: iP  argmaxj2{i,iP } Lt(j)
30: ⇢0.enqueue(i, Ut(i))
31: else if iP -in-queue = True then
32: Continue
33: else
34: Break Inner While Loop
35: end if
36: end while
37: ⇢ ⇢0

38: end while
39: return iP
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confidence bounds on Q, we prove a PAC bound for PAC greedy maximization. In
particular, we prove that under the same conditions, PAC greedy maximization finds a
solution A

P such that, with high probability, Q(AP ) is close to Q(A⇤).

We can now prove a lemma that shows that, with high probability, the marginal gain
of the element picked by pac-max(tighten, X , AP , ✏1) is ✏-optimal with high probabil-
ity.

Lemma 7. Let X = {1, 2, . . . , n}, A
+ = {A ✓ X : |A|  k}, and Q : 2X ! R+. If

pac-max(tighten, X , A, ✏1) terminates and returns iP , and if Assumption 1 holds, then
with probability (at least) 1� �1,

Q(AP
[ iP ) � Q(AP

[ i⇤)� ✏1, (5.4)

where �1 = �u + �l and i⇤ = argmaxi2X\AP Q(AP
[ i) and A

P is any set in A
+.

Proof. If pac-max returns iP = i⇤, then the Lemma holds trivially, since

Q(AP
[ i⇤) � Q(AP

[ i⇤)� ✏1. (5.5)

For the case that pac-max returns iP 6= i⇤, we provide the proof here.

Lets assume that pac-max returns iP after T (T not known or fixed) total iterations.
That is, t goes from 0 to T .

We prove this Lemma in two parts:

• In part A, we show that if the assumed confidence intervals Ut(i) and Lt(i) hold
for all t and i, then pac-max returns an ✏-optimal element. That is, if

Ut(i) � Q(AP
[ i) (5.6)

and
Lt(i)  Q(AP

[ i) (5.7)

is true for all i 2 X and t 2 {1, 2, . . . , T}, then

Q(AP
[ iP ) � Q(AP

[ i⇤)� ✏1. (5.8)

• In part B, we compute the probability that the confidence intervals hold for all i
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and t, that is, the probability,

Pr
⇣
(Ut(i) � Q(AP

[ i) ^ Lt(i)  Q(AP
[ i) for i = 1, t = 1)^

((Ut(i) � Q(AP
[ i) ^ Lt(i)  Q(AP

[ i) for i = 1, t = 2)^

((Ut(i) � Q(AP
[ i) ^ Lt(i)  Q(AP

[ i) for i = 1, t = 3)^

. . .

((Ut(i) � Q(AP
[ i) ^ Lt(i)  Q(AP

[ i) for i = 2, t = 1)^

((Ut(i) � Q(AP
[ i) ^ Lt(i)  Q(AP

[ i) for i = 2, t = 2)^

. . .

. . .

((Ut(i) � Q(AP
[ i) ^ Lt(i)  Q(AP

[ i) for i = n, t = T )
⌘

(5.9)

We show that this probability is lower bounded by 1 � �1 if Assumption 1 holds.
Here �1 = �l + �u is the probability that the confidence intervals (UCI or LCI) are
not true at least once in T iterations for at least one i.

Part A: To show, if for all i and t, confidence intervals hold, that is, Ut(i) � Q(AP
[

i) � Lt(i) is true for all i, t, then

Q(AP
[ iP ) � Q(AP

[ i⇤)� ✏1. (5.10)

At any iteration t 2 {1, 2, . . . , T} pac-max maintains the element with max lower
bound. Lets denote the element with max lower bound at the end of iteration t by iPt .
Since i⇤ was eliminated (iP 6= i⇤), thus at some iteration t0, its upper bound was lower
than the maximum lower bound + ✏1 (lets say of element iPt0 ). Let Lt0(i) denote the lower
bound (and Ut0(i) denote the upper bound) at iteration t0 of element i, then, the lower
bound of element iPt0 is greater than the upper bound of i⇤ minus ✏ at some iteration t0:

Lt0(i
P
t0 ) � Ut0(i

⇤)� ✏1. (5.11)

Since (a) we have assumed that Lt is monotonically increasing, and (b) pac-max
returns iP , this implies on termination the element with maximum lower bound is iP ,
and this lower bound on iP has to be greater than Lt0(iPt0 ), since iP was able to replace
iPt0 at an iteration t > t0.

LT (i
P ) � Lt0(i

P
t0 ) (5.12)
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Figure 5.1: Figure illustrating the terminating condition for pac-max. pac-max returns
iP , the element with max lower bound, after T (not known or fixed) total iterations.
In the figure notations A

P is omitted for clarity. The small horizontal lines represent
the true value of an element and the ends of the vertical lines represent the upper and
lower bounds on an element. The figure illustrates that if that for all i and for all t 2
{1, 2, . . . T}, the confidence intervals Ut(AP

[ i) � Q(AP
[ i) � Lt(AP

[ i) hold then
Q(AP

[ iP ) � Q(AP
[ i⇤)� ✏1.

Combining (5.11), and (5.12), we get,

LT (i
P ) � Lt0(i

P
t0 ) � Ut0(i

⇤)� ✏1 (5.13)

If confidence interval hold for all t and i, then Ut0(i⇤) � Q(AP
[ i⇤) and Q(AP

[

iP ) � LT (iP ), this implies,

Q(AP
[ iP ) � LT (i

P ) � Ut0(i
⇤)� ✏1 � Q(AP

[ i⇤)� ✏1. (5.14)

Figure 5.1 shows an example of terminating condition for pac-max and that Q(AP
[ iP )

is within ✏ range of Q(AP
[ i⇤) if the confidence intervals hold.

Thus, if confidence intervals Ut(i) and Lt(i) hold for all t and i, then,

Q(AP
[ iP ) � Q(AP

[ i⇤)� ✏. (5.15)

Part B: In part B, we compute the probability that the upper and lower confidence
intervals hold for all t and i. The reasoning in this part follows from the proof presented
in Maron and Moore [1994, 1997].
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We will be using extensively the union bound during this part of the proof. According
to union bound the probability of the union of events A1, A2, . . . , Al is bounded by the
sum of their individual probabilities:

Pr(A1 _A2 _ · · · _Al) = Pr(
[

l

Al) 
X

l

Pr(Al) (5.16)

To compute the probability that the confidence intervals hold for all i for all t, we
observe that this probability is equal to 1 - the probability that the confidence intervals
do not hold for at least one i during at least one iteration t. So we want to compute the
probability:

Pr(upper confidence interval (UCI) OR lower confidence interval (LCI)

do not hold for at least one i for at least one value of t ).
(5.17)

To compute this probability, lets start with the probability of the confidence interval
to NOT hold for one particular i = i0 at one particular iteration t = t0. We have assumed
that at iteration t, tighten(AP

[i, t) returns Ut(i) (and Lt(i)) such that with probability
1 � �u

nt(t+1) , Ut(i) � Q(AP
[ i) (this condition means that upper confidence interval

holds) is true. This implies that for a particular i = i0 at iteration t = t0, the probability
of upper confidence interval to not hold is (less than) �u

nt0(t0+1) and the probability that
lower confidence interval (Lt(i)  Q(AP

[ i)) does not hold is (less than) �l
nt0(t0+1) .

Then,

Pr
⇣

UCI OR LCI is not true for a particular i(= i0) at a particular iteration t(= t0)
⌘


⇣
Pr(UCI is not true for i0 at iteration t0 )+

Pr(LCI is not true for i0 at iteration t0)
⌘

(5.18)

By Assumption 1,

Pr(UCI is not true for i0 at iteration t0 ) 
�u

nt0(t0 + 1)
, (5.19)

and
Pr(LCI is not true for i0 at iteration t0 ) 

�l
nt0(t0 + 1)

, (5.20)
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Thus, using union bound,

Pr
⇣

UCI OR LCI is not true for i0 at iteration t0
⌘


�u + �l

nt0(t0 + 1)
. (5.21)

Again using union bound, probability that confidence intervals do NOT hold for i0

at t = 1 OR t = 2 OR t = 3 OR . . . OR t = T is bounded by sum of individual
(probability that confidence intervals do NOT hold for i0 for t = 1) + (probability that
confidence intervals do NOT hold for i0 for t = 2) + . . . (series ends at t = T ).

From equation (5.21), we know the probability that confidence intervals do not hold
for i0 at iteration t0 is less than �u+�l

nt0(t0+1) .

Pr((UCI or LCI is not true for i0 at least once in t 2 {1, 2, . . . , T})



TX

t=1

�l + �u
nt(t + 1)

(5.22)

The sum over t of the series 1
t(t+1) , that is ST =

PT
t=1

1
t(t+1) is bounded by (1 �

1
T+1 ) for a finite T and even as limT !1, limT!1

PT
t=1

1
t(t+1) is bounded by 12.

Thus, using union bound,

Pr((UCI or LCI is not true for i0 at least once in t 2 {1, 2, . . . , T})


�u + �l

n
(5.25)

Again we can use union bound to show that the probability that the confidence inter-
vals do not hold for i = 1 OR i = 2 OR . . . OR i = n, at least once in t 2 {1, 2, . . . , T}

is bounded by the (probability that the confidence interval do not hold for i = 1 at least
once in t 2 {1, 2, . . . , T}) + (probability that the confidence interval do not hold for
i = 2 at least once in t 2 {1, 2, . . . , T}) + . . . + (probability that the confidence interval
do not hold for i = n at least once in t 2 {1, 2, . . . , T}) .

Since for each i the probability that the confidence interval do not hold for i at least

2PT
t=1

1
t(t+1) can be expressed as:

TX

t=1

1

t(t+ 1)
=

TX

t=1

[
1

t
�

1

t+ 1
] = [1�

1

2
+

1

2
�

1

3
+

1

3
� · · ·�

1

T + 1
] (5.23)

= [1�
1

T + 1
]. (5.24)
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once in t 2 {1, 2, . . . , T} is bounded by �u+�l
n . Taking the sum over n terms yields:

Pr(UCI or LCI is not true for at least one i at least once in t 2 {1, 2, . . . , T})

 �u + �l. (5.26)

Finally, since probability that confidence intervals hold for all i for all t 2

{1, 2, . . . , T} = 1 - probability confidence intervals do not hold at least for one t 2

{1, 2, . . . , T} for at least one i, we can write that with probability 1� �1,

Q(AP
[ iP ) � Q(AP

[ i⇤)� ✏1. (5.27)

Comparison to best-arm identification algorithms

As noted before, pac-max accomplishes a similar goal as the existing best-arm identifica-
tion algorithms in the multi-armed bandit literature. The fundamental difference between
our approach and the existing algorithms such as UCB-E [Audibert and Bubeck, 2010],
LUCB [Kalyanakrishnan et al., 2012], Successive Elimination [Even-Dar et al., 2006],
Exponential-Gap [Karnin et al., 2013], Bernstein’s races [Mnih et al., 2008] and many
others is in the treatment of the reward by the analysis of the respective algorithm. To
the best of our knowledge, the convergence analysis and/or the sample complexity of all
these algorithms necessarily assume(s) the expected reward associated with each arm to
be a sum/mean (expected mean) of N (where N is a finite integer) i.i.d (independent and
identically distributed) random variables, that makes the application of concentration in-
equalities like Hoeffding’s inequality or Chernoff bound or (empirical) Bernstein’s bound
possible3. For example, Jamieson et al. [2014] presents lil’UCB that identifies the arm
with the largest mean in a multi-armed bandit problem. However, note that the explo-
ration term that lil’UCB proposes is quite specific and depends on Chernoff’s bound for
its exact derivation, and the proof for sample complexity of lil’UCB makes generous
use of Hoeffding’s inequality. In the same paper the authors compare their work with
other popular best-arm identification algorithms such as LUCB [Kalyanakrishnan et al.,
2012], Successive Elimination [Even-Dar et al., 2006], and Exponential-Gap Elimina-
tion [Karnin et al., 2013]. LUCB relies on Hoeffding’s inequality for its convergence
and sample complexity analysis (proof of Theorem 1 in [Kalyanakrishnan et al., 2012]).

3We made the same point before (5.1) where we noted that the mean of N i.i.d random variables is guar-
anteed to be an unbiased estimator. However, we do not treat the rewards or function that we want to maximize
as a sum of N i.i.d random variables. This is mainly because for entropy estimation such an assumption does
not hold.
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Even-Dar et al. [2006] present two versions of successive elimination algorithms, one
where the expected reward of each arm (a bandit arm is a element in X = {1, 2, . . . , n}

is our setting) is known and the other version when the expected reward is not known
(they call their algorithms as one with known biases and unknown biases, but this is
not be confused with the bias of an estimator), however, Hoeffding’s inequality is cen-
tral to the sample complexity and parameters of both of these algorithms. Analysis and
terminating condition of Bernstein’s races [Mnih et al., 2008] depends on the applica-
tion of empirical Bernstein’s bound that, in turn, is applicable to sum of N i.i.d random
variables.

The analysis of pac-max makes no such assumption about the rewards or functions
it takes as input. This is mainly because we seek an algorithm (and analysis) that can
be applied to functions that cannot be estimated in an unbiased manner, for example,
entropy, and thus do not necessarily satisfy the assumption that they can be expressed as
a sum of N i.i.d random variables. For the sake of argument one can assume entropy to
be sum of N i.i.d random variable but clearly that is not true. In short, if the estimator
is biased then the analysis and the associated results with algorithms such as UCB-E,
LUCB, Successive elimination, etc. cannot be directly used.

The cost of abstract upper and lower confidence bounds (and not tightening them with
one of the concentration inequalities) is that it is difficult to comment on (a) the sample
complexity of pac-max (b) the convergence of pac-max. In the current state, it is possible
that for very low values of ✏ and for problems where the upper and lower bounds are such
that they do not tighten beyond a certain point that pac-max may not converge. On the
other hand, this was not a problem in practice as pac-max was observed to converge
every time after a sufficient amount of parameter tuning was performed that involved
running pac-max for multiple values of ✏. In principle it might be possible to have a set
of terminating conditions for pac-max that can guarantee its convergence. For example,
pac-max can also be viewed as a probabilistic version of branch and bound approaches
[Boyd and Mattingley, 2007]. As a starting point Boyd and Mattingley [2007] propose
a number of conditions on the upper and lower bounds to show convergence of branch
and bound approaches. However, since our motivation is real-time sensor selection and
that we were able to observe the useful convergence of pac-max in practice, we leave the
setting of the assumptions and conditions required for analysing the sample complexity
and convergence of pac-max as future work.

Next, we show that, if in each iteration of greedy maximization an ✏-optimal element
is returned with probability 1 � �, then greedy maximization returns a set that is k✏-
optimal with probability 1� k�, where k is the number of iteration greedy maximization
is run for.
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Theorem 12. Let X = {1, 2, . . . n}, A
+ : {A ✓ X : |A|  k}, and Q : 2X ! R+ be

a non-negative, monotone and submodular in X . if Assumption 1 holds and if pac-max
terminates every time it is called then, with probability 1� �,

Q(AP ) � (1� e�1)Q(A⇤)� ✏, (5.28)

where A
P = pac-greedy-max(tighten, X , k, ✏1), A

⇤ = argmaxA2A+ Q(A), � =

k�1, and ✏ = k✏1. (Here �1 = �l + �u, and �l and �u are defined in Assumption 1.)

Proof. Let A
P
m denote the subset returned by pac-greedy-max after m iterations, that

is, A
P
m = pac-greedy-max(tighten, X , m, ✏1) and let {i⇤1, i

⇤
2, . . . i

⇤
k} (arbitrary order),

be the k elements of A
⇤. We denote the marginal gain of adding i to a subset A as:

�Q(i|A) = Q(A [ i)�Q(A). (5.29)

To prove Theorem 12, we first prove an intermediate result that we will use later in
the proof: Starting with the statement of Lemma 7, with probability 1� �1,

Q(AP
m [ iP ) � Q(AP

m [ i⇤)� ✏1, (5.30)

where i⇤ = argmaxi2X\AP
m

Q(AP
m [ i) and iP = pac-max(tighten, X , AP

m, ✏1).
This implies the following set of inequalities the explanation of which is provided

after them: with probability 1� �1,

Q(AP
m [ iP ) � Q(AP

m [ i⇤)� ✏1 (5.31)

Q(AP
m [ iP )�Q(AP

m) � Q(AP
m [ i⇤)�Q(AP

m)� ✏1 (5.32)

�Q(i
P

|A
P
m) � �Q(i

⇤
|A

P
m)� ✏1 (5.33)

�Q(i
P

|A
P
m) �

1

|A⇤ \ AP
m|

X

i2A⇤\AP
m

�Q(i|A
P
m)� ✏1 (5.34)

�Q(i
P

|A
P
m) �

1

k

X

i2A⇤\AP
m

�Q(i|A
P
m)� ✏1. (5.35)

Eq. (5.31) follows from Lemma 7, Eq. (5.32) is simple subtraction of Q(AP
m) from

both sides of inequality, Eq. (5.33) is re-writing (5.32) by using the definition of marginal
gain as given in (5.29) (and in Chapter 2), Eq. (5.34) is true because �Q(i⇤|AP

m) is the
maximum value of �Q(i|AP

m) for all i 2 X \ A
P
m. This implies it is definitely bigger

than the average value of�Q(i|AP
m) taken over A

⇤
\A

P
m where A

⇤ is a subset of X . Eq.
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(5.35) is true because |A
⇤
|  k.

The rest of the proof follows the same logic as Theorem 1 in Chapter 2, which is
the same as the proof presented in [Krause and Golovin, 2014] for Nemhauser’s original
result on greedy maximization of submodular functions.

We present the following sets of inequalities and then provide the explanations for
them below:

Q(A⇤)  Q(A⇤
[A

P
m) (5.36)

= Q(AP
m) +

kX

j=1

�Q(i
⇤
j |A

P
m [ {i⇤1, i

⇤
2, . . . , i

⇤
j�1}) (5.37)

 Q(AP
m) +

X

i2A⇤\AP
m

�Q(i|A
P
m) (5.38)

Equation (5.36) follows from monotonicity of Q, Eq. (5.37) is a straightforward tele-
scopic sum, Eq. (5.38) is true because Q is submodular.

Eq. (5.35) says that with probability 1� �1,

k(�Q(i
P

|A
P
m) + ✏1) �

X

i2A⇤\AP
m

�Q(i|A
P
m). (5.39)

Using (5.39), (5.38) can be written as:

With probability 1� �1,

Q(A⇤)  Q(AP
m) + k(�Q(i

P
|A

P
m) + ✏1) (5.40)

 Q(AP
m) + k(Q(AP

m [ iP )�Q(AP
m) + ✏1) (5.41)

 Q(AP
m) + k(Q(AP

m+1)�Q(AP
m) + ✏1) (5.42)

Eq. (5.40) follows from (5.38), (we just replaced
P

i2A⇤\AP
m
�Q(i|AP

m) with a
greater quantity k(�Q(iP |A

P
m)+ ✏1)). Eq (5.41) follows from the definition of marginal

gain in (5.29) and Eq. (5.42) is true because A
P
m [ iP is A

P
m+1 by definition of A

P
m and

iP at the start of the proof.

Lets define �m = Q(A⇤) � Q(AP
m), then (5.42) can be written as: with probability
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1� �1,

Q(A⇤)�Q(AP
m)  k[Q(A⇤)�Q(AP

m)� (Q(A⇤)�Q(AP
m+1) + ✏1] (5.43)

�m  k[�m � �m+1 + ✏1] (5.44)

�m+1  �m(1�
1

k
) + ✏1. (5.45)

Substituting m = 0 in (5.45) gives, with probability 1� �1,

�1  (1�
1

k
)�0 + ✏1 (5.46)

Substituting m = 1 in (5.45) again gives, with probability 1� �1,

�2  (1�
1

k
)�1 + ✏1 (5.47)

Now combining (5.46) and (5.47) and using union bound as presented in equation
(5.16) (explained below): with probability 1� 2�1,

�2  (1�
1

k
)
h
(1�

1

k
)�0 + ✏1

i
+ ✏1 (5.48)

 (1�
1

k
)2�0 + (2�

1

k
)✏1 (5.49)

 (1�
1

k
)2�0 + 2✏1. (5.50)

The logic behind using union bound here is that the inequality in (5.46) can fail
with probability �1 and the inequality in (5.47) can fail with probability �1. If both
the inequalities in (5.46) and (5.47) do not fail then (5.48) (and consequently (5.50) is
definitely true. The probability that either of inequality in (5.46) or (5.47) fails is bounded
by their sum of the probabilities that either inequality fails individually: �1 + �1. The
probability of both inequality in (5.46) and (5.47) is true is 1� 2�1.

Substituting m = 2 in (5.45) again gives, with probability 1� �1,

�3  (1�
1

k
)�2 + ✏1 (5.51)

Combining (5.51) with (5.50), and using union bound (we just explained how to use

88



5.4. Conditional Entropy Bounds

union bound here in the paragraph above (5.51)), with probability 1� 3�1,

�3  (1�
1

k
)�2 + ✏1 (5.52)

 (1�
1

k
)
h
(1�

1

k
)2�0 + 2✏1

i
+ ✏1 (5.53)

 (1�
1

k
)3�0 + 3✏1. (5.54)

Continuing like this for m = 0 to k � 1, we get, with probability 1� k�1,

�k  (1�
1

k
)k�0 + k✏1 (5.55)

Now using the inequality that 1�x  e�x for all x 2 R, we get 1� 1
k  e

�1
k , which

implies, with probability 1� k�1,

�k  e
�k
k �0 + k✏1 (5.56)

Using definition of �k = Q(A⇤)�Q(AP ) and �0 = Q(A⇤)�Q(AP
0 ), with proba-

bility 1� k�1,

Q(A⇤)�Q(AP )  (e�1)[Q(A⇤)�Q(AP
0 )] + k✏1 (5.57)

Since Q(AP
0 ) > 0, with probability 1� k�1,

Q(A⇤)�Q(AP )  (e�1)[Q(A⇤)] + k✏1 (5.58)

Q(AP ) � (1� e�1)Q(A⇤)� k✏1 (5.59)

Theorem 12 proves that PAC greedy maximization, while assuming access only to
anytime confidence bounds on Q, computes A

P such that with high probability Q(AP )

has bounded error with respect to Q(A⇤). As PAC greedy maximization requires access
to cheap upper and lower confidence bounds, in the next section, we propose such bounds
for conditional entropy.

5.4 Conditional Entropy Bounds

In many settings, Ut and Lt can easily be constructed using, e.g., Hoeffding’s inequality
[Hoeffding, 1963] and tighten need only fold more samples into an estimate of Q.
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However, Hoeffding’s inequality only bounds the error between the estimate and the
expected value of the estimator. This in turn bounds the error between the estimate and
the true value only if the estimator is unbiased, i.e., the expected value of the estimator
equals the true value.

We are interested in settings such as sensor selection, where Q is based on conditional
entropy, that is computed by approximating the entropy of the posterior beliefs. However,
a naive estimator of entropy of a discrete distribution is known to be unbiased especially
in the absence of enough samples. Therefore, in this section, we propose novel, cheap
confidence bounds on conditional entropy that work with a naive estimator of posterior
entropies.

We start by defining the naive or maximum likelihood estimate of entropy. Given
M samples, {s1, s2 . . . sM

} from a discrete distribution b(s), the maximum likelihood
estimator (MLE) of b(s) is:

b̂(s) =
1

M

MX

j=1

1(sj , s), (5.60)

where 1(sj , s) is an indicator function that is 1 if sj = s and 0 otherwise. The MLE of
entropy is:

Hb̂(s) ,
X

s

b̂(s) log(b̂(s)). (5.61)

The naive estimator Hb̂(s) is known to be biased. This is because Hb̂(s) is a sum
of estimates of b(s) log(b(s)), i.e., it substitutes the quantity b(s) log(b(s)) with an esti-
mate b̂(s) log(b̂(s)), the expected value of which is less than its true value (application
of Jensen’s inequality on the function f(x) = �x log(x) [Nowozin, 2012b]). Though
Hb̂(s) is biased, some useful properties of the MLE estimator are [Antos and Kontoyian-
nis, 2001, Paninski, 2003]:

Theorem 13.
(a) Pr(|Hb̂(s)� E[Hb̂(s) | b]| � ⌘)  �⌘, (5.62)

where �⌘ = 2e
�M
2 ⌘2(log(M))�2

.

(b) µM (b)  E[Hb̂(s) | b]�Hb(s)  0, (5.63)

where µM (b) = � log(1 + |supp(b)|�1
M ) and |supp(b)| is the size of support of b.

Hence (5.62) bounds the variance of Hb̂(s) and (5.63) bounds its bias, which is always
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5.4. Conditional Entropy Bounds

negative.

5.4.1 Lower Confidence Bound

Let HA
b̂
(s|z) be defined as:

HA
b̂
(s|z) ,

X

z2⌦

Pr(z|b, A)Hb̂Az
(s), (5.64)

where Hb̂Azi
(s) is the MLE of the entropy of the posterior distribution b̂Az (s).

Lemma 8. With probability 1� �0l,

HA
b̂
(s|z)  HA

b (s|z) + ⌘, (5.65)

where �0l = |⌦|2e
�M
2 ⌘2(log(M))�2

, HA
b̂
(s|z) =

P
z2⌦ Pr(z|b, A)Hb̂Az

(s) and
HA

b (s|z) =
P

z2⌦ Pr(z|b, A)HbAz
(s).

Proof. Starting from (5.63) for a fixed A, for a particular zi 2 ⌦ and b = bAzi
,

E[Hb̂Azi
|b̂Azi

](s)  HbAzi
(s). (5.66)

Using (5.62), we know for a particular zi, with probability 1� �⌘ ,

Hb̂Azi
(s)  E[Hb̂Azi

|b̂Azi
](s) + ⌘. (5.67)

 HbAzi
(s) + ⌘. (5.68)

Eq. (5.68) follows directly from (5.66). Now, since (5.68) is true for all z, then taking
a simple expectation over z gives,

X

z2⌦

Pr(z|b, A)Hb̂Az
(s) 

X

z2⌦

Pr(z|b, A)HbAz
(s) + ⌘. (5.69)

Hb̂(s|z)  Hb(s|z) + ⌘. (5.70)

The probability of the event that the (5.68) is true for all z 2 ⌦, is 1� probability that
at least for one particular value of z 2 ⌦ (5.68) is not true. Using union bound, this
probability is bounded by sum over z over probability that for a particular value of z
(5.68) is not true. Since there can be only |⌦| different values of z, the probability that at
least for one particular value of z 2 ⌦ (5.68) is not true is bounded by |⌦|�⌘ .
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Thus, with probability 1� �0l,

HA
b̂
(s|z)  HA

b (s|z) + ⌘, (5.71)

where �0l = |⌦|�⌘ .

Using Lemma 8, Lt on HbAz
(s) after t calls to tighten(A, t) can be constructed

as: with probability 1 � �l
nt(t+1) , Lt(A) = HA

b̂
(s|z) �

q
2(log(M))2

M log( 2n|⌦|t(t+1)
�l

) 

HA
b (s|z). This expression can be obtained by equating the desired confidence 1� �l

nt(t+1)

to 1� |⌦|�⌘ and solving for ⌘:

|⌦|�⌘ =
�l

nt(t + 1)
(5.72)

Substituting definition of �⌘ = 2e�
M
2 ⌘2(log(M))�2

, (5.73)

|⌦|2e�
M
2 ⌘2(log(M))�2

=
�l

nt(t + 1)
(5.74)

Dividing both sides by 2|⌦| (5.75)

e�
M
2 ⌘2(log(M))�2

=
�l

2n|⌦|t(t + 1)
(5.76)

Taking log on both sides, (5.77)

�
M

2
⌘2(log(M))�2 = log(

�l
2n|⌦|t(t + 1)

) (5.78)

Multiplying �2(log(M))2

M on both sides (5.79)

⌘2 =
2(log(M))2

M
log(

2n|⌦|t(t + 1)

�l
) (5.80)

⌘ =

s
2(log(M))2

M
log(

2n|⌦|t(t + 1)

�l
) (5.81)

Typically, the bottleneck in computing HA
b̂
(s|z) is performing the belief update to

find b̂Azi
for each zi. In practice, we approximate these using particle belief updates

[Doucet et al., 2001], which, for a given zi, generate a sample sj from b̂(s) and then an
observation z0 from Pr(z|sj , A). If zi = z0, then sj is added to the set of samples ap-
proximating b̂Azi

. Consequently, HA
b̂
(s|z) can be tightened by increasing M , the number

of samples used to estimate b̂zA
i

. However, tightening HA
b̂
(s|z) by using larger values of

M is not practical as computing it involves new posterior belief updates (with a larger
value of M ) and hence increases the computational cost of tightening HA

b̂
(s|z).
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5.4. Conditional Entropy Bounds

5.4.2 Upper Confidence Bound

Since Hb̂(s) is negatively biased, finding an upper confidence bound is more difficult.
A key insight is that such a bound can nonetheless be obtained by estimating posterior
entropy using an artificially “coarsened” observation function. That is, we group all pos-
sible observations into a set � of clusters and then pretend that, instead of observing z,
the agent only observes what cluster z is in. Since the observation now contains less in-
formation, the conditional entropy will be higher, yielding an upper bound. Furthermore,
since the agent only has to reason about |�| clusters instead of |⌦| observations, it is also
cheaper to compute. Any generic clustering approach, e.g., ignoring certain observation
features can be used, though in some cases domain expertise may be exploited to select
the clustering that yields the tightest bounds.

Let r = hr1 . . . rni represent a crude approximation of z. That is, for every i, ri is
obtained from zi by ri = f(zi, d), where f clusters zi into d clusters deterministically
and ri denotes the cluster to which zi belongs. Also, if zi = ;, then ri = ;. Note that
Hb(r|z) = 0 and the domain of ri and rj share only ; for all i and j.

Lemma 9. Let r be an approximation of z, that is, r is obtained after clustering (or
processing) z deterministically such that it contains not extra information about s, then

HA
b (s|z)  HA

b (s|r). (5.82)

Proof. To prove this Lemma we use the chain rule for entropy that states that for two
random variables A and B, the joint entropy can be expressed as:

H(A, B) = H(A|B) + H(B) = H(B|A) + H(A). (5.83)

Using the chain rule for entropy on HA
b (s, z|r)

HA
b (s, z|r) = HA

b (s|z, r) + HA
b (z|r) = HA

b (z|s, r) + HA
b (s|r). (5.84)

Since r contains no additional information and can be determined with full certainty
given z, HA

b (s|z, r) = HA
b (s|z),

HA
b (s|z) + HA

b (z|r) = HA
b (z|s, r) + HA

b (s|r). (5.85)

Since conditioning can never increase entropy [Cover and Thomas, 1991], HA
b (z|s, r) 
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Original observation space: 
Each cross represents a

possible position that can be 
obtained as an observation.
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Clustered observation space:
 Each cross is mapped to the circle of 

its color when reasoning about the
position of a person

Figure 5.2: An example clustering of the original finely discertized observation space
into 14 clusters with each cluster shown in a different color. The big color filled circles
indicate the approximate center point of that particular cluster. By reasoning about the
position of the person in the scene with this coarse observation space, the agent can
compute a lower bound on the information gained from observing a particular region in
the space. Best viewed in colour.

94



5.4. Conditional Entropy Bounds

HA
b (z|r). Thus, for the equality in (5.85) to hold, it is necessary that

HA
b (s|r) � HA

b (s|z) (5.86)

HA
b (s|r) is cheaper to compute than HA

b (s|z) because it requires only |�| belief updates
instead of |⌦|. Starting with a small �, HA

b̂
(s|r) can be tightened by increasing the num-

ber of clusters and thus |�|. Figure 5.2 shows an example of clustering finely discretized
observation space (top) into 14 clusters (bottom). Figure 5.3 shows the bias in entropy
estimation as the number of samples are increased. It also shows that if the state space is
clustered and a new probability distribution is computed over the clustered state space is
leads to a reduction in the true entropy and bias of the entropy estimator.

Note that computing HA
b (s|r) requires Pr(r|s, A), which can be obtained by

marginalizing z out from Pr(z|s, A), a computationally expensive operation. However,
this marginalization only needs to be done once and can be reused when performing
greedy maximization for various b(s). This occurs naturally in, e.g., sensor selection,
where the hidden state that the agent wants to track evolves over time. At every time
step, b(s) changes and a new set A

P must be selected.
However, computing HbAr

(s) still requires iterating across all values of s. Thus, to
lower the computational cost further, we use estimates of entropy, as with the lower
bound:

HA
b̂
(s|r) =

X

r2�

Pr(r|b, A)Hb̂Ar
(s). (5.87)

Computing HA
b̂
(s|r) is cheaper than HA

b (s|r) but is not guaranteed to be greater than
HA

b (s|z) since the entropy estimates have negative bias. However, we can still obtain an
upper confidence bound.

Lemma 10. With probability 1� �0u

HA
b (s|z)  HA

b̂
(s|r) + ⌘ � µM (b), (5.88)

where �0u = |�|2e
�M
2 ⌘2(log(M))�2

, HA
b (s|z) =

P
z2⌦ Pr(z|b, A)HbAz

(s), HA
b̂
(s|r) =

P
r2� Pr(r|b, A)Hb̂Ar

(s) and µM (b) = � log(1+ |supp(b)|�1
M ) is assumed to be constant

for some large value of |supp(b)| = C.

Proof. (5.62) implies that for a given A and for a particular ri, with probability 1� �⌘ ,

E[Hb̂Ari
(s) | bAri ]  Hb̂Ari

(s) + ⌘. (5.89)
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(a) N=100; |S|=500 (b) N=100; |S|=334

(c) N=250; |S|=500 (d) N=250; |S|=334

Figure 5.3: Figure illustrating bias in entropy estimation in a simulated setting. In this ex-
periment, a probability distribution over a hidden variable s that can take values in the set
S = {1, 2, . . . , 1000} was considered. The red dot in the plots above shows the true entropy
of the distribution and the red triangle and red histogram show the mean and the distribution of
estimating entropy with N samples. To contrast, the values in the set S were clustered into 500
and 334 clusters such that in the resulting distribution the probability mass on a resulting cluster
is the sum of the probability mass (in the original distribution) on the values that are in the cluster.
The blue dot represents the entropy of the resulting distribution over the clustered values and blue
triangle and histogram show the mean and distribution of estimated entropy respectively when the
clusters are generated randomly. The other clustering strategy that was tried was to cluster values
with high probability mass together. This is represented by the green dot, triangle and histogram.
The figure shows that as the ratio of the number of samples used to estimate the entropy to the size
of the support of the true distribution increases, the bias (relative to the the true entropy) in the
estimation of entropy decreases. While here we cluster the state space, clustering the observation
space (effectively smaller observation space) when computing information gain leads to a simi-
lar effect as a smaller number of observations allows for a higher number of samples to estimate
posterior belief entropies leading to a lesser bias in the entropy estimation.

96



5.4. Conditional Entropy Bounds

Since (5.89) is true for all possible values of ri with probability 1 � �⌘ , taking an
expectation over ri and using union bound (explained below) gives, with probability
1� |�|�⌘ ,

Er[E[Hb̂Ar
(s) | bAr ]]  Er[Hb̂Ar

(s) + ⌘]. (5.90)

The logic behind using union bound here is that the probability that (5.89) does not
hold for at least one particular value of r is bounded by sum over all values of r of
probabilities that (5.89) does not hold for that particular value of ri, which is |�|�⌘ . Here
|�| is the size of set containing all possible values of r. Thus, the probability of the
event that (5.89) holds for all values of r 2 � is 1 � |�|�⌘ . Thus, the following sets of
inequalities hold (explanation below the equations), with probability 1� �0u,

Er|b,A[E[Hb̂Ar
(s) | bAr ]]  Er|b,A[Hb̂Ar

(s) + ⌘] (5.91)

Er|b,A[HbAr
(s) + µM (bAr )]  Er|b,A[Hb̂Ar

(s) + ⌘] (5.92)

Er|b,AHbAr
(s) + µM (b)  Er|b,AHb̂Ar

(s) + ⌘ (5.93)

HA
b (s|r) + µM (b)  HA

b̂
(s|r) + ⌘ (5.94)

HA
b (s|z) + µM (b)  HA

b̂
(s|r) + ⌘ (5.95)

HA
b (s|z)  HA

b̂
(s|r) + ⌘ � µM (b). (5.96)

Eq (5.92) follows from (5.63) that bounds the bias in the entropy estimator by µM (b), Eq.
(5.93) is simple separation of expectations applied to separate terms, we have assumed
⌘ and µM (b) to be constant (in the statement of the Lemma), Eq. (5.94) is replacing the
conditional entropy Hb(s|r) and Hb̂(s|r) by their definitions given in the statement of
the Lemma, Eq. (5.95) is obtained after using Lemma 9 to obtain Hb(s|z)  Hb(s|r),
Eq. (5.96) is obtained by subtracting µM (b) from both sides.

With Lemma 10, Ut can be constructed as: Ut(A) = [HA
b̂
(s|r) +q

2 log(M)2

M log( 2n|⌦|t(t+1)
�u

)+log(1+ 1
M (|supp(b)|� 1))] � Hb(s|z) (using |�|  |⌦|).

In practice, we use a larger value of M when computing HA
b̂
(s|r) than HA

b̂
(s|z). Doing

so is critical for reducing the negative bias in HA
b̂
(s|z). Furthermore, doing so does not

lead to intractability because choosing a small |�| ensures that few belief updates will be
performed.

Thus, when computing HA
b̂
(s|z), we set M low but perform many belief updates;

when computing HA
b̂
(s|r) we set M high but perform few belief updates. This yields

cheap upper and lower confidence bound for conditional entropy.

The following theorem ties together all the results we presented. Note that, since Q
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is defined as negative conditional entropy, Lt is defined using our upper bound and Ut

using our lower bound.

Theorem 14. Let Q(A) = Hb(s) � HA
b (s|z). Let tighten be defined such that

tighten(A, t) returns

Ut(A) = Hb(s)�HA
b̂
(s|z) +

q
2(log(M))2

M log( 2n|⌦|t(t+1)
�u

) and

Lt(A) = Hb(s) � [HA
b̂
(s|r) +

q
2(log(M))2

M log( 2n|⌦|t(t+1)
�l

) + log(1 +
1
M (|supp(b)|� 1))]. Let A

P = pac-greedy-max(tighten, X , k, ✏1) and
A

⇤ = argmaxA2A+ Q(A), where X = {1, 2, . . . , n} and A
+ = {A ✓ X : |A|  k}.

If z is conditionally independent given s then, with probability 1� �,

Q(AP ) � (1� e�1)Q(A⇤)� ✏, (5.97)

where � = k(�l + �u), ✏ = k✏1.

Proof. We showed that with probability 1 � �l
nt(t+1) , Lt(A)  Q(A) and with prob-

ability 1 � �u
tn(t+1) , Ut(A) � Q(A). Krause and Guestrin [2005b] showed that Q is

non-negative, monotone and submodular if z is conditionally independent given s. The
tighten procedure can be designed by tightening the upper and lower bounds by either
increasing M or by changing the clusters used to estimate Hb̂(s|r). Thus, Theorem 12
with ✏ = k✏1 and �1 = �u + �l implies the stated result.

5.5 Experiments

We evaluated PAC greedy maximization on the problem of tracking people on the shop-
ping mall dataset. The field of view of a few cameras were divided into two or three
separate regions and each region was treated as an independent camera, so as to enable
more challenging experiments with as many as n = 20 cameras.

We first consider tracking a single person. The hidden state s is modelled as the
position and velocity of the person and described by the tuple hx, y, vx, vyi, where x and
y describe the position and vx and vy describe his velocity in the x and y directions. Both
x and y are integers in {0, . . . , 150}. The surveillance area can be observed with n = 20

cameras and, if selected, each camera produces an observation hzx, zy
i containing an

estimate of the person’s x-y position.

We assume a person’s motion in the x direction is independent of his motion in
the y direction. Given the current position xcurr, the future position xnext is a deter-
ministic function of xcurr and the current velocity in x-direction vcurr

x , i.e., xnext =
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Figure 5.4: Multi-person tracking for n = 20 and (top) k = 1; (middle) k = 2; (bottom)
k = 3.
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xcurr + vcurr
x . The same is true for the y position. The future velocity vnext is mod-

elled as a Gaussian distribution with the current velocity as the mean and the stan-
dard deviation, which depends on the current x-y position, learnt from the data, i.e.,
vnext

x ⇠ N (vcurr
x ,�x) and vnext

y ⇠ N (vcurr
y ,�y). The observations are assumed to be

conditionally independent given the state and are generated from a Gaussian distribution
with the true position as the mean and a randomly generated standard deviation. Since
ground truth data about people’s locations is not available, learning the standard devia-
tion is not possible. A belief b(s) about the person’s location was maintained using an
unweighed particle filter with 200 particles. Given a subset of the sensors and the obser-
vations they generated, b(s) is updated using a Monte-Carlo belief update [Doucet et al.,
2001]

To evaluate a given algorithm, a trajectory was sampled randomly. At each time step
in the trajectory, a subset of k cameras out of n = 20 were selected by the algorithm.
Using the resulting observations, the person was tracked using an unweighed particle
filter [Doucet et al., 2001], starting from a random initial belief. At each time step, a
prediction argmaxs b(s) about the person’s location was compared to the person’s true
location. Performance is the average number of correct predictions made per trajectory.
For multi-person tracking, the best subsets of cameras for each person were computed
independently of each other and then the subset with the highest value of Q was selected.

We conducted experiments with different values of n and k. As a baseline, we use
greedy maximization and stochastic greedy maximization. Since we cannot compute Q

exactly, greedy maximization simply uses an approximation, based on MLE estimates of
conditional entropy, ignoring the resulting bias and making no attempt to reason about
confidence bounds. Stochastic greedy maximization, in each iteration, samples a subset
of size R from X and selects from that subset the element that maximizes the estimated
marginal gain. Neither greedy nor stochastic greedy maximization employ lazy evalua-
tions, i.e., pruning elements via a priority queue as in lazy greedy maximization, because
the reliance on approximation of Q means pruning is no longer justified. In addition,
since lazy greedy maximization’s pruning is based on marginal gain instead of Q, the
bias is exacerbated by the presence of two entropy approximations instead of one. On
average the length of each trajectory sampled was 25 time steps and the experiments were
performed on 30 trajectories with 5 independent runs. To avoid clutter, we show results
for only the two best performing parameter (parameters tuned for all three algorithms
were: number of samples used to estimate the posterior entropy, number of observations
sampled to reason about future beliefs, clustering of the observations space for PAC GM,
value of ✏ for PAC GM, size of R for SGM, etc) settings of each algorithm.

Figure 5.4 shows the number of correct predictions (y-axis) against the runtime (x-
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axis) of each method. Thus, the top left is the most desirable region. In general, PAC
greedy maximization performs nearly as well as the best-performing algorithm but does
so at lower computational cost. As k increases PAC greedy maximization scales better
than greedy maximization and stochastic greedy maximization and hence is more suited
for real-life problems.

5.6 Conclusions & Future Work

In this chapter, we proposed PAC greedy maximization, a new algorithm for submodular
function maximization when evaluating the function exactly is not feasible. PAC greedy
maximization in each iteration calls pac-max that uses cheap and tunable upper and lower
confidence bounds on information gain to find the best sensor to add to a partial solution.
pac-max is closely related to the algorithms for finding the best arm in a multi-armed
bandit [Audibert and Bubeck, 2010]. Thus, an exciting line of future work is to apply the
ideas from the existing literature on best arm identification to PAC greedy maximization.

To complement PAC greedy maximization we propose cheap confidence bounds on
information gain. Estimation of entropy is a popular topic in the field of statistics and
machine learning. However, the bounds we propose are computationally cheaper than
the existing methods which makes them suitable for the sensor selection task. By ex-
ploiting submodularity we showed that PAC greedy maximization when applied with our
proposed confidence bounds is guaranteed to return a solution that with high probability
has bounded error. A key factor for the performance of PAC greedy maximization can be
the way by which the observations are clustered to get the upper confidence bound. Thus,
studying good strategies for clustering for getting upper confidence bounds on entropy
can be an interesting avenue for future work.

While in this chapter we focussed on reducing entropy of the belief of the agent
at the next immediate time step, employing PAC greedy maximization for long-term
planning is fairly simple, as greedy maximization in greedy PBVI can be simply replaced
by PAC greedy maximization. It can even be combined with Monte Carlo value iteration
[Bai et al., 2010], to yield a scalable offline planner. Moreover, if offline planning is
not tractable, PAC greedy maximization can also be easily integrated with bandit-based
planning [Kocsis and Szepesvári, 2006, Silver and Veness, 2010] for online planning.

A key bottleneck in the computation of information gain is that the computational cost
of information gain grows exponentially with the size of the subset of sensors. This is
because the number of observations that can be generated from a subset of sensors grows
exponentially with its size. Thus, a key challenge to make sensor selection truly scalable
is to either circumvent or overcome the challenge of expensive evaluation functions with
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algorithms that quickly identify the suboptimal choices.
Finally, the real-life applications of sensor selection algorithms can involve not just

tens or hundreds of sensors, but thousands of sensors. While PAC greedy maximization is
able to select 3 sensors out of 20 relatively quickly as compared to other methods, scaling
PAC greedy maximization to even larger scenes can prove to be tough. In the next chapter
we present a fundamentally different approach to scale greedy maximization to scenes
where thousands of sensors are involved. By proposing a new utility function that is an
approximation of a traditional utility function we are able to propose a new algorithm
that can identify the most informative sensors out of approximately 10000 sensors in
milliseconds.
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The previous chapters focused on sensor selection as an active perception task. While
offline planning and PAC planning scale to problems of reasonably large size, for many
active perception problems it is simply not possible to scale these methods because of
the sheer size of the problem. For example, when tracking people in ultra high resolu-
tion images it is required to apply a trained person detector on the many possible pixel
boxes (a rectangle that potentially contains a person or an object of interest, shown in
Figure 6.1) in the image to detect people. Many tracking systems struggle to perform
in real-time because of the high computational cost of detecting people in the ultra high
resolution images. Thus, in this chapter we focus on real-time resource allocation for
tracking systems. We formulate this problem as selecting k out of the n pixel boxes to
apply a person detector on to track people in high resolution images. We introduce a
new algorithm PartiMax that is quickly able to identify the most relevant pixel boxes in
an image to apply a person detector on to track people, without adding any significant
computational overhead. PartiMax exploits information in the previous beliefs to select
k of the n candidate pixel boxes in the image. We prove that PartiMax is guaranteed
to make a near-optimal selection with error bounds that are independent of the problem
size. Furthermore, empirical results on a real-life dataset show that our system runs in
real-time by processing only 10% of the pixel boxes in the image while still retaining
80% of the original tracking performance achieved when processing all the pixel boxes.

In the rest of this chapter we describe the motivation and background for tracking
people in high resolution images, followed by description of our algorithm PartiMax and
its analysis. Finally, we present our experiments that show that PartiMax runs in real-time
by processing only 40 out of 7200 pixel boxes.
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Pixel box

Figure 6.1: A wide-view scene recorded by a rooftop camera; the cyan rectangle shows
an example pixel box.

6.1 Automated Tracking

Automated tracking is a key component of countless computer vision applications such
as maintaining surveillance, studying traffic flows, and counting the number of people
in a scene [Hu et al., 2012, Smeulders et al., 2014]. Consequently, in recent years many
tracking systems have been proposed that make it possible to track people in a variety of
challenging settings [La Cascia et al., 2000, Benfold and Reid, 2011, Smeulders et al.,
2014]. However, these approaches still cannot perform real-time tracking on ultra high
resolution videos (e.g., 5000⇥4000 pixels). In particular, the detection stage, i.e., identi-
fying an object in a scene, is the main computational bottleneck for systems that work on
the tracking-by-detection principle [Benfold and Reid, 2011]. For example, Figure 6.1
shows a wide-view scene recorded by a camera mounted on top of a building [Schutte
et al., 2016]. Successful tracking depends on detecting the person in the image by apply-
ing a trained detector to many pixel boxes. Since the scene records a wide landscape, the
pixel boxes must be relatively small (e.g., 180⇥180), yielding approximately 7200 pixel
boxes per image. Consequently, performing a brute force detection (BD) that applies
the person detector to all 7200 pixel boxes is extremely computationally intensive and
prohibitive to do in real time.

In this chapter we propose a new algorithm that greatly reduces the cost of detection
and thus enables real-time tracking on systems with ultra high resolution images or many
cameras. The main idea is to perform selective detection (SD), i.e., apply the person
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Figure 6.2: Proposed tracking system with PartiMax, our proposed selective detection
method, highlighted in red. Blue boxes indicate other parts of the tracking system. At
every time step, a belief about the position of the person in the image is maintained.
PartiMax selects k pixel boxes in the image to which to apply a person detector. The
observations only from the k selected pixel boxes are the used to update the belief about
the position of the person in the image. The updated belief serves as the prior belief for
the next time step and the system repeats the process.

detector not on all n pixel boxes, but only a carefully selected subset of k pixel boxes,
while retaining performance guarantees, as shown in Figure 6.2. To do so, we build on
existing techniques for sensor selection, which select the k out of n sensors with the
highest utility in a multi-sensor network. By modelling each of the n pixel boxes as a
separate sensor we are able to exploit existing methods for sensor selection to perform
selective detection. The main challenge with planning online in real-time is that there are
�n

k

�
ways to perform the selection, and computing the best one would use up the same

scarce computational resources we aim to intelligently allocate. Fortunately, when the
utility function is submodular, greedy maximization which evaluates the utility function
only O(nk), instead of

�n
k

�
, times can find a near-optimal solution. In addition, variants

of greedy maximization like stochastic greedy maximization [Mirzasoleiman et al., 2015]
or PAC greedy maximization can further reduce the computational cost of planning.

However, for selective detection in real-time, even PAC/stochastic greedy maximiza-
tion is too expensive because computing typical utility functions such as information
gain or expected coverage requires marginalizing out the observation that each candidate
sensor generates. In fact, in real-life settings evaluating information gain or expected
coverage even once can be prohibitively expensive.

Thus, we propose a new utility function for selective detection called particle cover-
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age and show it approximates expected coverage under certain conditions, but is much
faster to compute. Then, we describe PartiMax. Unlike (stochastic) greedy maximiza-
tion, which treats utility evaluation as a black-box, PartiMax maintains and updates the
particle coverage of each pixel box in every iteration of greedy maximization, leading
to large computational savings, as the particle coverage of each pixel box is not evalu-
ated from scratch in each iteration. Furthermore, instead of eliminating a subset of pixel
boxes randomly in every iteration like stochastic greedy maximization, PartiMax sam-
ples pixel boxes with high particle coverage, minimizing the chance of eliminating good
pixel boxes and yielding superior tracking performance.

Since sampling pixel boxes with high particle coverage without computing the parti-
cle coverage is not trivial, we propose a sampling algorithm that can sample pixel boxes
with high particle coverage in constant time. It does so by employing tile coding, a pop-
ular representation in reinforcement learning that discretizes continuous spaces. Further-
more, we prove that this algorithm is guaranteed to sample a pixel box with probability
directly proportional to its particle coverage.

We show that, given access to a sampling algorithm like the one we propose, Parti-
Max is guaranteed to return a solution with tight error bounds that are independent of
the problem size, i.e., independent of both n and k. Although PartiMax is designed for
the particle coverage function, our bound applies generally to maximization over a set
function.

Finally, we use PartiMax for selective detection to build a real-time tracking system,
which we apply to a real-life dataset. Our results show that our tracking system retains
80% of its performance despite processing only 10% of each image and running in real
time.

In the rest of the chapter, we give a quick recap of the notation (same as the previous
chapters) followed by an introduction to particle filters for tracking. Next, we describe
the particle coverage utility function for selective detection, followed by PartiMax, the
algorithm we propose and its analysis and finally the experiments.

6.2 Background

Basic Setup

Let X = {1, 2 . . . n} denote the set of all pixel boxes and i denote a single pixel box
in X . A

+ denotes the set of all possible subsets of X of size less than or equal to k,
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A
+ = {A ✓ X : |A|  k}. s is a hidden variable denoting the true location of a person1

in the scene and S is the set of all possible values s can take. The observation vector
z = hz1, z2 . . . zni denotes the result of applying the detector to each pixel box, i.e., an
estimate of whether a person in s appears in that box. If a pixel box i is not selected for
detection, then zi = ;. ⌦ is the set of all possible values z can take. The belief b(s) is a
probability distribution over s. Given A and z, b(s) can be updated using Bayes rule.

When there are many possible states, it is not possible to maintain b(s) exactly. Thus,
we use particle filters, described below, to maintain and update belief b(s).

Particle Filters

When there are many possible states, it is infeasible to update b(s) exactly. Instead,
we can use particle filters [Doucet et al., 2001], sequential Monte Carlo algorithms for
approximate inference in partially observable scenarios that are commonly used to track
people in complex situations. The true belief b(s) is approximated with a particle belief
B, a collection of m samples from b(s), called particles: B = {s1, s2 . . . sm}. Although
weighted particle filters are often used for tracking, we use an unweighed particle filter
since it can be efficiently implemented with a black-box simulator without the need to
explicitly model the accuracy of the person detector or the motion dynamics [Silver and
Veness, 2010].

Given a subset A and observation z, particle beliefs can be updated using a Monte
Carlo belief update. For each particle sl 2 B, the next state s0l is sampled from Pr(s0|s)

(under the Markov assumption) to form B
0 = {s0l : s0l ⇠ Pr(s0|sl) ^ sl 2 B}. For

each s0l 2 B
0, the corresponding zl is drawn from Pr(z|s0l, A). If zl matches z according

to some metric, or if zl = z, then s0l is added to the updated belief B
A
z . Otherwise,

the particle is discarded. To avoid particle degeneracy, a common problem with particle
filters, we combine the belief update with new particles introduced by adding random
artificial particles to the existing particle set.

Utility Functions

For tracking tasks, the utility function is often defined as information gain as described in
Chapters 3 and 4 [Cover and Thomas, 1991, Krause and Guestrin, 2005b, Tham and Han,
2013]. It can also be defined as expected coverage [Spaan and Lima, 2009]. For particle
belief expected coverage can be formally defined as: Let I

j
B0 be the set of particles in B

0

1For simplicity, we sometimes assume there is only one person in the scene. However, our methods and
theoretical results extend easily to multiple people by assuming that any two person’s motion and detections are
independent. Furthermore, in the Experiments section, we present empirical results on tracking with multiple
people.
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Figure 6.3: Particle belief: the yellow rectangle shows a pixel box and the particles it
covers.

that are covered by pixel box j, I
j
B0 = {s0 2 B

0 : j covers s0}. A pixel box j covers s0 if
a person in state s0 is visible in pixel box j. The expected coverage is defined as:

FB0(A) =
X

z

Pr(z|B0, A)fBA
z
(A), (6.1)

where fB(A) = | [j2A I
j
B| and Pr(z|B0, A) =

P
s02B0

1
|B0| Pr(z|s

0, A)fBA
z
(A).

Expected coverage is appropriate for sensor selection or selective detection because
it rewards selecting pixel boxes that have the highest probability of detecting a target.
The underlying assumption is that the observations generated by the person detector are
informative enough to detect a person correctly inside a pixel box. This is barely a
restrictive assumption, as most useful person detectors satisfy it.

6.3 Particle Coverage Utility Function

The utility functions described above are too expensive to compute in many practical
settings, as they require marginalizing out observations, which is infeasible for real-time
systems. In this section, we propose the particle coverage function (PCF) for selective
detection, which does not require computing B

A
z and approximates expected coverage.

PCF is defined as follows:

PCFB0(A) = fB0(A) = | [j2A I
j
B0 |. (6.2)

PCFB0(A) is simply the number of particles in B
0 that are covered by A. In Fig-
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ure 6.3, the particle coverage is the number of cyan particles that fall in the yellow pixel
box. As opposed to expected coverage FB0 , PCF does not involve an expectation over z
nor does it require computing the resulting beliefs B

A
z . PCF equals expected coverage

under certain conditions, including the following.

Assumption 2. For every s0 2 S, A ✓ X , there exist zs0,A and z̄s0,A in ⌦ such that
if s0 is covered by A, Pr(z = zs0,A|s0, A) = 1 and if s0 is not covered by A, then
Pr(z = z̄s0,A|s0, A) = 1.

This is a simple assumption that says that for each combination of s0 2 S and A ✓ X ,
there exists instances of observation z in the set ⌦, where ⌦ is the set of all values z can
take, z̄s0,A and zs0,A, such that they are received with full certainty depending on whether
s0 is covered by A or not. This assumption implies that any partial observability is due
to perceptual aliasing, not noise in the sensors. Given Assumption 2, it is straightforward
to show that expected coverage is equal to the particle coverage in the absence of sensor
noise.

Theorem 15. If Assumption 2 holds for a given A, then FB0(A) = PCFB0(A), where
FB0(A) =

P
z2⌦ Pr(z|B0, A)fBA

z
(A), fB0(A) = | [j2A I

j
B0 | and PCFB0(A) =

fB0(A) = | [j2A I
j
B0 |. Here I

j
B0 denotes the set of particles in B

0 that are covered
by the pixel box j .

Proof. Expected coverage can be expressed as

FB0(A) =
X

z2⌦

Pr(z|B0, A)fBA
z
(A) (6.3)

=
X

z2⌦

X

s02B0

1

|B0|
Pr(z|s0, A)fBA

z
(A). (6.4)

Let S
0
A ✓ B

0 denote the set of particles in B
0 that are covered by A and let S̄

0
A be

the set of particles in B
0 that are not covered by A. Then, since for each combination of

s0 2 B
0, A, there are two observations possible: zs0,A and z̄s0,A. Thus, FB0(A) can be

written as:

FB0(A) =
X

s02S0
A

1

|B0|
Pr(zs0,A|s0, A)fBA

zs0,A
(A) +

X

s02S̄0
A

1

|B0|
Pr(z̄s0,A|s0, A)

⇠⇠⇠⇠⇠⇠:0
fBA

z̄s0,A
(A)

(6.5)

fBA
z̄s0,A

(A) is 0 for each s0 2 S̄
0
A because according to the particle belief update we

described B
A
z̄s0,A

will only accept particles from B
0 that are not covered by A since only
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those particle can lead to the observation z̄s0,A. fBA
z̄s0,A

(A) is the number of particles in

B
A
z̄s0,A

that are covered by A which is zero.
Thus,

FB0(A) =
X

s02S0
A

1

|B0|
Pr(zs0,A|s0, A)⇠⇠⇠⇠⇠⇠: |B

0
|

fBA
zs0,A

(A) (6.6)

(6.7)

fBA
zs0,A

(A) is the number of particles covered by A in B
A
zs0,A

if zs0,A is observed.

B
A
zs0,A

will only accept particles from B
0 that are covered by A because only those parti-

cles can lead to the observation zs0,A.

FB0(A) =
X

s02S0
A

1

|B0|
Pr(zs0,A|s0, A)|B0

| (6.8)

The sum
P

s02S0
A
Pr(zs0,A|s0, A) is the sum of the number of particles in B

0 that
are covered by A times 1 (Pr(zs0,A|s0, A) = 1, according to Assumption 2), which is
exactly the same as PCFB0(A).

In cases where Assumption 2 does not hold, particle coverage can be considered an
approximation to expected coverage. Its key advantage is that computing fB0 does not
require hypothetical belief updates, as one can iterate over the particle belief and simply
count the number of particles that are covered by A, making it practical for real-time
applications. Moreover, it is a member of a class of coverage functions that are known
to be submodular [Krause and Golovin, 2014, Takamura and Okumura, 2009] so we can
employ greedy maximization to approximately maximize fB0 . Our experiments show
that fB0 is a good choice of utility function for selective detection in real time, leading to
excellent tracking performance at a fraction of the computational cost.

Note that we formulate Assumption 2 merely for analysis purposes: to describe a set
of cases in which particle coverage and expected coverage are identical. Assumption 2
is not a restrictive condition for applying PartiMax, described below. On the contrary,
in Section 6.6 we present excellent results for PartiMax on a real-life dataset for which
Assumption 2 does not hold.

Furthermore, while we define particle coverage for the case of an unweighed particle
filter, the concept is more general. In essence, the particle coverage of a pixel box is the
cumulative probability mass concentrated on the states that are covered by the pixel box.
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Activated pixel
boxes that cover
the red cross

Two different
tilings

Figure 6.4: An example tile coding with two tilings. The highlighted tiles show the two
pixel boxes that cover the red cross.

Thus, any method that approximates a belief can be used to compute particle coverage
by simply computing the probability mass concentrated on a set of states. For example,
for a weighted particle filter, the particle coverage of a pixel box is just the sum of the
weights of the particles covered by the pixel box.

6.4 PartiMax

In this section, we propose PartiMax, which combines the complementary benefits of
PCF and stochastic greedy maximization for selective detection. Moreover, rather than
merely naively applying them together, we exploit the unique structure of PCF to develop
a better approach for sampling pixel boxes that is guaranteed to sample pixel boxes with
high coverage, thus offering a further increase in performance. PartiMax is based on the
key insight that sampling pixel boxes with a probability that is directly proportional to
their particle coverage leads to strong theoretical guarantees on the expected utility. Thus,
we prove error bounds for PartiMax that are independent of the number of available pixel
boxes n, the number of particles in the particle filter m, or the number of pixel boxes to
be selected k.

Greedy maximization and stochastic greedy maximization assume oracle access to
the utility function and thus compute the marginal gain for every pixel box in every
iteration. Generally, computing particle coverage function given a pixel box requires
iterating over the particles to count how many fall in the space covered by the pixel box.
Unlike greedy maximization, PartiMax does not explicitly compute particle coverage
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for each pixel box on the fly but instead maintains the particle coverage by updating it
in every iteration. Using an approach inspired by tile coding, a popular reinforcement
learning technique for coding continuous state spaces, PartiMax is able to compute and
maintain the particle coverage of every pixel box without having to visit n pixel boxes or
m particles in every iteration.

A tile coding consists of many tilings. Each tiling is a set of tiles, which in our
setting are pixel boxes. The pixel boxes in a tiling partition the state space S, i.e., they
are disjoint and completely cover S. For example, Figure 6.4 shows two tilings in blue
and yellow. Typically, different tilings have the same size pixel boxes but start at a fixed
offset from each other, as in the figure. Since the pixel boxes in a given tiling form a
partition, there is exactly one pixel box in each tiling that covers a given state s0. If we
represent each tiling as an array, locating the pixel box that covers a given state s0 requires
only simple arithmetic involving the size of the pixel boxes and the offset between the
tilings. Figure 6.4 highlights the two pixel boxes, one in each tiling, that cover a given
state (red cross). Thus, by representing the entire space of pixel boxes as multiple tilings,
the set of pixel boxes Ts0 that covers a given state s0 can be identified in constant time.

In reinforcement learning, tile codings are used to discretize continuous state spaces
in order to approximate a value function. Here, we use it differently, just as a scheme
for dividing an image into overlapping pixel boxes. The benefit of this approach is that
it enables PartiMax to maintain �f efficiently, by providing constant-time access to the
set Ts0 of all pixel boxes that cover a given state s0, i.e., Ts0 = {i 2 X : i covers s0}.

Algorithm 6 PartiMax(B0, X , k)

1: h�,�f i  initialize(B0, X )
2: A

S
 ;.

3: for l = 1 to k do
4: R sampleP(r, B0, X , AS)
5: i0  argmaxi2R�f (i|AS)
6: A

S
 A

S
[ i0

7: h�f ,�i  update(�f ,�, i0, AS , X )
8: end for
9: return A

S

Algorithm 6 shows pseudocode for PartiMax. It starts by calling initialize (Al-
gorithm 7), which returns two data structures, � and �f . �(i|;) stores for each i the set
of particles in B

0 that i covers; and �f (i|;) is the number of particles that are covered
by i. For each particle s0 2 B

0, initialize calls covers, which uses the tile coding
to find the set of pixel boxes Ts0 that cover that particle. For every activated pixel box,
i 2 Ts0 , �f (i|;) is incremented and s0 is added to the set of particles �(i|;).
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Algorithm 7 initialize(B0, X )

1: �(i|;) ; 8 i 2 X

2: �f (i|;) 0 8 i 2 X

3: for s0 2 B
0 do

4: Ts0  covers(s0)
5: �(i|;) �(i|;) [ {s0} 8 i 2 Ts0

6: �f (i|;) = �f (i|;) + 1 8 i 2 Ts0

7: end for
8: return h�,�f i

Once � and �f are returned by initialize, PartiMax proceeds like stochas-
tic greedy maximization, adding in each iteration the pixel box i0 that maximizes the
marginal gain from R, a subset of X of size r. Since going over all pixel boxes is too
expensive, PartiMax calls Algorithm 8 to obtain R, a subset of X of size r (r << n).
However, unlike stochastic greedy maximization, R is not sampled uniformly randomly
but instead Algorithm 8 samples from a distribution such that the probability that i is
included in R is directly proportional to the particle coverage of i.

Algorithm 8 sampleP(r, B0, X , AS)

1: R ;

2: while |R| < r do
3: s0 ⇠ Unif( (B0

|A
S)) .  (B0

|A
S) denotes the set of particles

4: in B
0 that are not covered by any pixel box in A

S

5: Ts0  covers(s0)
6: i ⇠ Unif(Ts0) . uniformly random sample from Ts0

7: R R [ i
8: end while
9: return R

In general, sampling from such a distribution would be difficult, but with PCF we
can do this efficiently. Algorithm 8 first uniformly randomly samples a particle from the
belief. If the particle is not covered by A

S , then it uses tile coding to find the set of
pixel boxes Ts0 that cover s0 and adds a pixel box uniformly randomly from Ts0 . This is
repeated until r pixel boxes are added to R.

At the end of each iteration, PartiMax calls update (Algorithm 9), which updates
�f (i|AS) and �(i|AS) for every i 2 [s02�(i0|AS)Ts0 . It starts by iterating over the
particles s0 in �(i0|AS) and for each particle uses the tile coding to find Ts0 . For every
pixel box i 2 Ts0 ,�f (i|AS) is decremented and s0 is removed from �(i|AS), to account
for the fact that i0 now covers s0 and thus the marginal gain of i is reduced. The marginal
gain of every other i remains unchanged. Similarly, �(i|AS) is updated by subtracting
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s0 from �(i|AS) for every i in Ts0 .

Algorithm 9 update(�f ,�, i0, AS , X )

1: for s0 2 �(i0) do
2: Ts0  covers(s0)
3: �f (i|AS) = �f (i|AS)� 1 8 i 2 Ts0

4: �(i|AS) �(i|AS) \ s0 8 i 2 Ts0

5: end for
6: return h�f ,�i

6.5 Analysis

We now establish bounds on the cumulative error of PartiMax that are independent of the
problem size. We start with a lemma that shows that the probability of adding i to R via
Algorithm 8 is directly proportional to the marginal gain of i.

Lemma 11. Let i = sampleP(1, B0, X , AS) then PrAS (i = ij) =
1
c�(ij |AS), where

c = tm0 is a constant, X = {1, 2, . . . , n} is the set of n pixel boxes, A
S is any set in

A
+ = {A ✓ X : |A|  k}, m0 is the set of particles in B

0 that are not covered by any
pixel box in A

S , �f (ij |AS) = fB0(AS
[ ij)� fB0(AS) is the number of particles that

are covered by ij but not covered by any pixel box in A
S . Here, fB0(A) = |[j2A I

j
B0 | is

the number of particles in B
0 that are covered by the pixel boxes in A.

Proof. The probability that sampleP(1, B0, X , AS) returns ij is product of probability
that ij is included in the set Ts0 on line 5 in Algorithm 8, times the probability that ij is
sampled from Ts0 .

Pr
AS

(i = ij) = Pr(ij 2 Ts0) Pr(ij is sampled from Ts0) (6.9)

The Pr(ij 2 Ts0) is the number of ways ij can be sampled in Ts0 on line 5 in Algo-
rithm 8. ij can be sampled in Ts0 only if ij covers s0. Thus, the number of ways ij can
be sampled in Ts0 is the number of particles that ij covers but A

S does not cover, that
is, every particle in  (B|A

S). The total number of particles that can be sampled is m.
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Thus,

Pr(ij 2 Ts0) =
number of particle ij covers but A

S does not
m0 (6.10)

=
f(AS

[ ij)� f(AS)

m0 (6.11)

=
�f (i|AS)

m0 , (6.12)

where �f (i|AS) = f(AS
[ i)� f(AS) is the marginal gain of adding ij to A

S , that is
the increase in the number of particles covered by A

S
[ ij caused by the addition of ij

to A
S . (Here f(AS) is the number of particles covered by A

S .)
The probability that ij is sampled from Ts0 (uniformly randomly) is 1

|Ts0 |
. Lets say

there are t tilling in total, so that, |T
0

s | = t. Thus, using (6.9):

Pr
AS

(i = ij) =
1

tm0�f (ij |A
S) (6.13)

Next, we show that PartiMax is guaranteed to be near-optimal.

Theorem 16. Let F be a non-negative set function over a collection of sets A
+ =

{A1, A2 . . . Av} and let A
⇤ = argmaxA2A+ F (A), let A

0 = argmaxA2R F (A), such
that R is a set of r sets sampled independently from a probability distribution over A

+

such that probability that a given set A 2 A
+ is sampled is Pr(A) = 1

cF (A) for all
A 2 A

+, where c is a scalar constant, such that, c
F (A⇤) � 1  r. Then,

F (A⇤)� EF (A0)  (
r

1 + r
)rF (A⇤). (6.14)

Proof. Let p1, p2 . . . pv denote Pr(A1),Pr(A2) . . .Pr(Av) respectively. Also without
loss of generality, we assume p1 � p2 � . . . pv . Consequently, it follows, F (A1) �

F (A2) � · · · � F (Av). Note A
⇤ = A1.

The probability that every time a sample is drawn, it is not A1 is (1 � p1). The
probability that A1 is not drawn in r independent samples drawn from P is (1 � p1) ⇥

(1� p1)⇥ . . . ( r times).

Pr(A1 62 R : |R| = r) = (1� p1)
r (6.15)

Since,
Pr(A1 2 R) = 1� Pr(A 62 R), (6.16)
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implies,
Pr(A1 2 R) = 1� (1� p1)

r. (6.17)

The expected value of F (A0) is:

E[F (A0)] = Pr(A1 2 R) max
A002R

F (A00) + Pr(A1 62 R) max
A002R

F (A00) (6.18)

= Pr(A1 2 R)F (A1) + Pr(A1 62 R) max
A002R

F (A00) (6.19)

� Pr(A1 2 R)F (A1) (6.20)

= (1� (1� p1)
r)F (A1) (6.21)

Eq. (6.18) follows from the definition since F (A0) = maxA2R F (A), Eq. (6.19)
follows from the assumption that let A1 = A

⇤, thus if A1 2 R it the element that
maximizes F , Eq. (6.20) is true because we are removing a non-negative quantity from
(6.19), Eq. (6.21) is simple substitution of Pr(A1 2 R) as computed before.

This implies,

E[F (A0)] � (1� (1� p1)
r)F (A1) (6.22)

�EF (A0)  �(1� (1� p1)
rF (A1) (6.23)

F (A1)� EF (A0)  F (A1)� (1� (1� p1)
r)F (A1) (6.24)

= cp1 � (1� (1� p1)
r)cp1 (6.25)

= (1� p1)
rcp1. (6.26)

Eq. (6.22) follows from (6.21), Eq. (6.23) is obtained by multiplying both sides by
-1 and inverting the inequality, Eq. (6.23) follows from adding F (A1) (non-negative) on
both sides of inequality, Eq. (6.25) follows from the assumption that cPr(A) = F (A)

for all A, thus, p1 = Pr(A1) =
F (A1)

c .

The maxima of the expression (1� p1)rcp1 occurs at p1 = 1
r+1 :

@((1� p1)rcp1)

@p1
=
@(1� p1)r

@p1
cp1 +

@cp1

@p1
(1� p1)

r (6.27)

= r(1� p1)
r�1(�1)cp1 + c(1� p1)

r (6.28)

= (1� p1)
r�1[�crp1 + c� cp1] (6.29)

= (1� p1)
r�1c[�p1(1 + r) + 1] (6.30)

Equating (6.30) to zero, gives: p1 = 1
r+1 (unless p1 = 1).
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(a)

(b)

(c)

(d)

Figure 6.5: Figure illustrating local maxima of expression ((1� p1)r)cp1 on y-axis and
p1 varying from 0 to 1 on x-axis for different values of r and c: (a) r = 2, c=10; (b) r=4,
c=10; (c) r=10, c=0.5; r=20, c=0.5

This maxima can be confirmed by the plots of (1� p1)rcp1 for various values of r as
shown in Figure 6.5.

Substituting p1 = 1
r+1 in (6.25),

F (A1)� E[F (A0)]  ((1�
1

r + 1
)r)c

1

r + 1
(6.31)

(6.32)

Let c
F (A1)

� 1  r =) 1
p1
 r + 1 =) p1 �

1
r+1 . This implies,

F (A1)� E[F (A0)]  ((1�
1

r + 1
)r)cp1. (6.33)

Replacing cp1 by F (A1) in (6.33) gives,

F (A1)� E[F (A0)]  (
r

r + 1
)rF (A1). (6.34)
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Since F (A1) is F (A⇤), this implies,

F (A⇤)� E[F (A0)]  (
r

r + 1
)rF (A⇤). (6.35)

The above theorem guarantees that, granted access to a probability distribution
such that Pr(A) = 1

cF (A), there exists a tight theoretical guarantee for selecting
A

0 = argmaxA2R F (A) for c
F (A⇤) � 1  r.

Directly applying Theorem 16 and Lemma 11 yields the following lemma, which
shows that the marginal gain of PartiMax �f (i0|AS) in each iteration is at least (1 �
( r

r+1 )
r)�f (i⇤|AS), where i⇤ = argmaxi2X\AS �(i|AS).

Lemma 12. Let X = {1, 2, . . . , n} be the set of n pixel boxes, A
+ = {A ✓ X :

|A|  k}, and A
S be any set in A

+. Let B
0 be a particle belief with m parti-

cles, fB0(A) be the number of particles covered by A in B
0, fB0(A) = | [j2A I

j
B0 |

and let �f (i|A) = fB0(A [ i) � fB0(A) denote the marginal gain of adding i to
A. Let i⇤ = argmaxi2X\AS �f (i|AS) and let i0 = argmaxi2R�f (i|AS), where
R = sampleP(r, B0, X , AS) and r � tm

2 � 1, where t is the number of tilings, m = |B
0
|

is the number of particles in B
0. The expected marginal gain of PartiMax in an iteration,

E[�f (i0|AS)|AS ], is atleast, (1� ( r
r+1 )

r)�f (i⇤|AS), that is,

�f (i
⇤
|A

S)� E[�f (i
0
|A

S)|AS ]  (
r

r + 1
)r�f (i

⇤
|A

S). (6.36)

Proof. Follows from Theorem 16 with F as �f , X \ A
S as A

+, i⇤ as A
⇤, i0 as A

0 for a
given A

S .

�f (i
⇤
|A

S)� E[�f (i
0
|A

S)|AS ]  (
r

r + 1
)r�f (i

⇤
|A

S). (6.37)

Theorem 16 requires that R is made with r independent samples drawn from a distri-
bution such that probability of sampling a pixel box i is PrAS (i) = 1

c�f (i|AS), where c

is a constant. Lemma 11 exactly shows this for c = tm0, where t is the number of tilings
and m0 is the number of samples in B

0 that are not covered by A
S . This satisfies one

condition of Theorem 16.
Theorem 16 also requires r � tm0

�f (i⇤|AS) � 1. Now, m is the number of particles in
B
0 which is naturally greater than number of particles in B

0 that are not covered by A
S ,

m0. Thus, the value of r � tm
�f (i⇤|AS) � 1 satisfies this condition.
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Now, �f (i⇤|AS) is the number of particles covered by i⇤ in B
0 that are not covered

by A
S . For �f (i⇤|AS) = 0 or �f (i⇤|AS) = 1, Eq. (6.36) is trivially satisfied for all

values of r � 1. This is because i⇤ = argmaxi2X\AS �f (i|AS) and if �f (i⇤|AS) is
zero then �f (i|AS) is zero for all i, which implies that E[�f (i0|AS)|AS ] is also zero.
Thus, (6.36) holds trivially for all integer values of r � 1

For the case when �f (i⇤|AS) = 1, this can only happen if for all i, �f (i|AS) = 1

or 0. In this case, sampleP is designed such that it will only sample i in R for which
�f (i|AS) = 1. Thus, E[�f (i0|AS)|AS ] = 1. Thus, again (6.36) holds trivially for all
integer values of r � 1.

For the case when�f (i⇤|AS) is greater than 1, the minimum values it can have is 2.
Thus, directly applying Theorem 16 as in (6.37) yields if r � tm

2 � 1:

�f (i
⇤
|A

S)� E[�f (i
0
|A

S)|AS ]  (
r

r + 1
)r�f (i

⇤
|A

S). (6.38)

Lemma 12 in turn yields the following theorem:

Theorem 17. Let fB0(A) be the number of particles covered by A in B
0, fB0(A) =

|[j2A I
j
B0 | and let�f (i|A) = fB0(A[ i)� fB0(A) denote the marginal gain of adding

i to A. Let A
⇤ = argmaxA2A+ fB0(A) and A

S
l = PartiMax(B0, X , l) for 1  l  k

and A
S
k = A

S , where A
+ = {A ✓ X : |A|  k} and X = {1, 2, . . . , n}.

If in every iteration Partimax calls sampleP with r � tm
2 �1 (lets say r = tm

2 �1),
where t is the number of tilings and m is the number of samples in B

0, then,

E[f(AS)] � (1� e�1
� ((r/(r + 1))r)f(A⇤). (6.39)

Proof. The proof follows similar logic as the proof presented for Theorem 1 in Chapter
2 except that we will introduce an expectation over A

S and bound the sum of error terms
in each iteration of greedy maximization by f(A⇤).

Let {i⇤1, i
⇤
2, . . . , i

⇤
k} (arbitrary order) be the k elements of A

⇤. Let A
S
l denote the

subset build by PartiMax if it was run for l iterations: A
S
l = PartiMax(B0, X , l).

To prove 17 we first prove an intermediary result that the expected gain of Par-
tiMax in each iteration is atleast 1

k

P
i2A⇤\AS

l
�f (i|AS

l ) � ( r
r+1 )

r�f (i⇤|AS
l ). Let

i0 = argmaxi2R�f (i|AS
l ).

We start with the statement of Lemma 12, which requires r to be greater than tm
2 �1,

then for a given A
S
l
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E[�f (i
0
|A

S
l )|A

S
l ] � �f (i

⇤
|A

S
l )� (

r

r + 1
)r)�f (i

⇤
|A

S
l ). (6.40)

By definition i⇤ = argmaxi2X\AS
l
�(i|AS

l ), thus,�f (i⇤|AS
l ) is the maximum value of

�f (i|AS
l ) for all i 2 X \ A

S
l . Since A

⇤
✓ X , thus �f (i⇤|AS

l ) must be greater than the
average value of �f (i|AS

l ) over i 2 A
⇤

\ A
S
l , that is,

�f (i
⇤
|A

S
l ) �

1

|A⇤ \ AS
l |

X

i2A⇤\AS
l

�f (i|A
S
l ), (6.41)

and since |A
⇤

\ A
S
l |  k,

�f (i
⇤
|A

S
l ) �

1

k

X

i2A⇤\AS
l

�f (i|A
S
l ). (6.42)

Using (6.42) and (6.40):

E[�f (i
0
|A

S
l )|A

S
l ] �

1

k

X

i2A⇤\AS
l

�f (i|A
S
l )� (

r

r + 1
)r�f (i

⇤
|A

S
l ) (6.43)

Now we follow the same steps as in proof of Theorem 2 in the chapter Background :

f(A⇤)  f(A⇤
[A

S
l ) (6.44)

= f(AS
l ) +

kX

j=1

�f (i
⇤
j |A

S
l [ {i⇤1, i

⇤
2, . . . , i

⇤
j�1}) (6.45)

 f(AS
l ) +

X

i2A⇤\AS
l

�f (i|A
S
l ) (6.46)

f(A⇤)� f(AS
l ) 

X

i2A⇤\AS
l

�f (i|A
S
l ) (6.47)

Eq (6.44) follows from monotonicity of f , Eq (6.45) is a straightforward telescopic
sum, Eq (6.46) is true because f is submodular.

Eq. (6.43) showed that k(E[�f (i0|AS
l )|A

S
l ] � ( r

r+1 )
r�f (i⇤|AS

l )) �
P

i2A⇤\AS
l
�f (i|AS

l ), using this with (6.47) gives,
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f(A⇤)� f(AS
l )  k(E[�f (i

0
|A

S
l )|A

S
l ]� (

r

r + 1
)r�f (i

⇤
|A

S
l )) (6.48)

Using definition of i0 and �f , �f (i0|AS
l ) = f(AS

l+1)� f(AS
l ),

f(A⇤)� f(AS
l )  k(E[f(AS

l+1)� f(AS
l )|A

S
l ]� (

r

r + 1
)r�f (i

⇤
|A

S
l )) (6.49)

Taking expectation over A
S
l ,

E[f(A⇤)� f(AS
l )]  k(E[f(AS

l+1)� f(AS
l )]� E[( r

r + 1
)r�f (i

⇤
|A

S
l )]) (6.50)

Now lets define �l = f(A⇤)� f(AS
l ), and ⇣l = ( r

r+1 )
r�f (i⇤|AS

l )]which gives:2

E�l  k(E[�l � �l+1 � ⇣l] (6.51)

E�l(1�
1

k
)  E�l+1 � E⇣l (6.52)

E�l+1 � E�l(1�
1

k
) + E⇣l) (6.53)

Let l = 0,

E�1  (1�
1

k
)E�0 + E⇣0. (6.54)

Substituting l = 1 in (6.53),

E�2  (1�
1

k
)E�1 + E⇣1. (6.55)

Combining (6.54) and (6.55),

E�2  E(1� 1

k
)2�0 + E[⇣1 + ⇣0] (6.56)

Substituting l = 2 in (6.53),

E�3  (1�
1

k
)E�2 + E⇣2 (6.57)

2Note that i⇤ = argmaxı2X\AS
l
�f (i⇤|AS

l ) is implicitly dependent on l. This i⇤ is not to be confused
with the elements of A⇤ = {i⇤1, i⇤2, . . . , i⇤k}.
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Combining (6.56) and (6.57),

E�3  E(1� 1

k
)3�0 + E[⇣2 + ⇣1 + ⇣0] (6.58)

Continuing like this for l = k � 1,

E�k  (1�
1

k
)k�0 +

k�1X

l=0

E⇣l (6.59)

The sum
Pk�1

l=0 E⇣l = ( r
r+1 )

r
Pk�1

l=0 E[�(i⇤|AS
l )]. Here, the sum

Pk�1
l=0 E[�(i⇤|AS

l )] is sum of expected values of k marginal gains which by defi-
nition is less than f(A⇤), since A

⇤ = argmaxA2A+ f(A), this implies,

E�k  (1�
1

k
)k�0 + (

r

r + 1
)rf(A⇤) (6.60)

Substituting �0 = f(A⇤)� f(AS
0 ), thus

E�k  (1�
1

k
)kf(A⇤) + (

r

r + 1
)rf(A⇤) (6.61)

Since 1� x  e�x for all x 2 R,

E�k  e�1f(A⇤) + (
r

r + 1
)rf(A⇤) (6.62)

Substituting �k = f(A⇤)� f(AS),

E[f(A⇤)� f(AS)]  e�1f(A⇤) + (
r

r + 1
)rf(A⇤) (6.63)

This implies,
E[f(AS)] � (1� e�1

� (
r

r + 1
)r)f(A⇤) (6.64)

The above theorem thus establishes a bound on the error of PartiMax that is indepen-
dent of the size of the problem. While we have shown the theorem under the condition
that r � tm

2 � 1, however, this condition is to bound the worst case when the maximum
marginal gain a pixel box can have in a particular iteration of PartiMax is as low as 2,
which rarely occurs in practice. Ideally, in iteration l of PartiMax, Theorem 16 would
like r to be greater than tm

�(i⇤|AS
l�1)

, which can be many times less than tm
2 . Moreover,

even this is not a hard condition in practice, as we showed in Figure 6.6 and Figure 6.7
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that even for very low values of r, the idea of sampling a pixel boxes from a probability
distribution that is directly proportional the utility of the pixel box leads to good empirical
performance.

While we have shown these results for PartiMax for selective detection, Theorem 16
is applicable to any problem that involves maximization over a set function where we can
sample from a probability distribution such that the probability of sampling a subset A is
directly proportional to the value of that subset specified by the set function F .

6.6 Experiments

We evaluated PartiMax on a dataset [Schutte et al., 2016] containing approximately 2100
trajectories of people recorded by a camera taking 5120⇥3840 resolution images running
at 6 frames per second. The trajectories were generated using the ACF detector [Dollár
et al., 2014] and in-camera tracking [Schutte et al., 2016].

We model the state s as the person’s position and velocity, s = hx, y, vx, vyi, where
x and y describe position and vx and vy describe velocity. Both x and y are integers in
{0, . . . , 5000}. We use a motion model that predicts the next position as:

xnext = xcurr + vcurr
x + N (0,�x), (6.65)

for x and analogously for y. We use a maximum likelihood estimate of �x learned from
the data.

Each pixel box was 180⇥ 180 and each tiling had a 60⇥ 30 offset from the previous
one. This offset was chosen because it is the size of the average bounding box required to
bound a detected person in the scene. This setup yields approximately 7200 pixel boxes
per image.

We assume access to a detector that determines with 90% accuracy whether a person
is located within a given pixel box and gives a noisy observation about the location of
the person if detected. Using the motion model and this detector, we maintain a particle
belief B about the person’s location using an unweighed particle filter with 250 particles.
Multi-person tracking uses a separate particle filter for each person.

In our experiments, each algorithm selects k pixel boxes to which to apply the de-
tector. To evaluate its performance, we sample a test trajectory from the dataset and try
to track the person’s movement, starting with a random belief B and updating it at each
time step using the observations generated from the selected pixel boxes. At each time
step, the agent is asked to predict the position of the person in the scene and gets a re-
ward of +1 for correct predictions and 0 otherwise. Performance is quantified as the total
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(a) Beta Distribution (↵ = 2;� = 5) (b) Binomial Distribution (p = 0.5)

(c) Gaussian Distribution (µ = 0;� = 1) (d) Laplace Distribution (µ = 0;� = 1)

(e) Uniform Distribution (a = 0; b = 1)

Figure 6.6: Figure showing the performance of PartiMax in a simulated setting. Here, the func-
tion F was generated randomly using the distribution mentioned above in the plots such that for
i 2 X = {1, 2, . . . , n}, F (i) was sampled from the respective distribution. The function was
later normalized to values between 0 and 1 so that 1 is the maximum value of F . Here we plot
the maxi2R F (i) on y�axis, where R is formed (a) by sampling r (here r = 5) samples from
a distribution such that the probability of including i in R is directly proportional F (i) (called
partimax in the plots; (b) by sampling r samples uniformly randomly from X (called random in
the plots. The x�axis plots the increasing value of n. For each value of n 10 runs of the above
experiment was performed and the average value is plotted in light blue and red. The solid blue
and red line show the running average over 100 values of n on x�axis. Mainly, the plots show that
even for values of r as small as 5 out of 10000, PartiMax is able to retain 70% of maximum value
for all the distributions.

124



6.6. Experiments

(a) Beta Distribution (↵ = 2;� = 5) (b) Binomial Distribution (p = 0.5)

(c) Gaussian Distribution (µ = 0;� = 1) (d) Laplace Distribution (µ = 0;� = 1)

(e) Uniform Distribution (a = 0; b = 1)

Figure 6.7: Figure showing the performance of PartiMax in a simulated setting when r = 10.
The setting is exactly the same as Figure 6.6. The plots shows that even for small values of r = 10
PartiMax retains a large portion of utility.
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Figure 6.8: Total correct predictions vs. CPU time (seconds) for tracking one (top), three
(middle) and five (bottom) people. The closer to the top-left corner, the better.
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cumulative reward aggregated by the agent at the end of a trajectory over a series of 50
time steps.

The experiments were run for over 140 trajectories for 8 independent runs for 1 per-
son tracking and 6 independent runs for 3 and 5 person tracking.

As a baseline, we compare against an efficient version of greedy maximization
(GM+PCF) (in red in plots) that employs tile coding to maintain the particle coverage
of each pixel box. GM+PCF is the same as PartiMax but, instead of selecting the pixel
box with the highest particle coverage, in each iteration from R, GM+PCF selects it from
X . A naive implementation of greedy maximization that computes the particle coverage
of each pixel box in every iteration by going over the entire belief was too slow for a
complete run and required 160 seconds to select k = 40 from n = 7200 for one person
tracking. GM+PCF returns the same solution as greedy maximization but is faster.

We also compare to stochastic greedy maximization (in green in the plots) that ran-
domly samples a subset R from X but employs tile coding to maintain the particle cov-
erage of each pixel box. A naive implementation of stochastic greedy maximization that
computes particle coverage of each pixel box from scratch takes around 0.83 seconds for
k = 40 and r = 10 for one person tracking. The combination of SGM + PCF returns the
same solution as stochastic greedy maximization, but faster.

Figure 6.8 shows a detailed comparison between PartiMax, greedy maximization,
and stochastic greedy maximization when tracking 1, 3, or 5 people with k = 40. The
y-axis shows the cumulative correct predictions averaged over multiple trajectories that
the agent made using observations from each algorithm and the x-axis shows the time
taken by each algorithm to select 40 out of 7200 pixel boxes. Thus, the top left corner
indicates good tracking performance at a low computational cost. The brown line in the
figure shows the tracking performance when the brute force detection is used, that is the
person detector is applied to the entire image (except the part containing sky), which
takes approximately 2.5 seconds.

The blue diamond and triangle at the top left corner of each plot show the superior
performance and computational efficiency of PartiMax compared to the baselines. Par-
tiMax not only matches the performance of greedy maximization, it does so extremely
efficiently with a low value of r, thanks to the sampling scheme we propose. Stochastic
greedy maximization’s tracking performance suffers due to its random sampling, while
the computational cost of GM+PCF increases with the number of people. PartiMax com-
bines the best of both of these baselines and performs better both in terms of tracking
performance and computational cost. In fact, as the number of people in the scene in-
creases, PartiMax scales much better than any other algorithm. Overall, PartiMax is able
to retain 80% percent of BD’s tracking performance but is at least 10 times faster.

127



6. Real-Time Online Planning

6.7 Conclusions & Future Work

In this chapter we proposed a new tracking system that selectively processes only a frac-
tion of an image to track people in real time. By casting the problem of resource allo-
cation in automated tracking systems as selection of k pixel boxes out of the n available
we were able to exploit the existing methods for sensor selection to propose PartiMax.
For real time resource allocation in tracking systems we proposed PCF, a simple and
cheap coverage function, instead of using computationally expensive functions such as
the expected coverage or information gain. By exploiting the structure in the problem we
proposed a new sampling algorithm that can sample high utility pixel boxes without ever
computing the utility of any pixel box. Given access to such an algorithm we showed that
it is possible to obtain error bounds on maximizing any set function that is independent
of the size of the problem. Finally our experiments showed that PartiMax is able to retain
80% of the original tracking performance while only processing 10% of the entire image.

The definition of PCF is such that it does not reason about the observation noise in
the sensor/pixel box model; however, it still performs well even in the presence of noise.
While there are many possible hypotheses for explaining this, an exciting line of future
work is to study the relationship between PCF and the utility functions that reason about
the noise model such as the expected coverage and information gain. Many applications
like active learning and influence maximization involves maximization of information
gain. Thus, exactly establishing the conditions under which a computationally cheap
coverage function can closely approximate the information gain (one case is in absence
of any noise) can lead to algorithms that scale easily to large problems as demonstrated
by PartiMax.

Our formulation of the selective detection problem specifically when the utility func-
tion is PCF is closely related to the submodular set cover problem [Wolsey, 1982,
Hochbaum, 1996]. Extending PartiMax to abstract settings for maximizing coverage
functions is another useful avenue for future work. In particular, PartiMax is able to
exploit the structure in the tracking problem with help of the tile coding representation
of the pixel boxes. Thus, a key idea is to identify other problems where similar struc-
ture is present. The sampling scheme we propose samples sets that have high particle
coverage and extending it to other interesting utility functions such as information gain
is an exciting idea. The sampling algorithm, notably, is an instance of sampling from
submodular point processes [Iyer and Bilmes, 2015]. Sampling from point processes is
an interesting and growing field and its application for sensor/pixel box selection merits
further investigation.

The methods presented in this and the previous chapters assume a model of the world
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to select the best actions to take to reduce uncertainty about the state of the world. Con-
sequently, their performance is dependent on a precise and carefully designed model that
may require domain expertise. In many cases such a model of the world is difficult to ob-
tain. Moreover in real-life many of the several assumptions made to derive the model may
break leading to bad performance. Thus, in the next chapter we present an model-free
approach to active perception using deep reinforcement learning methods that enables an
agent to learn the optimal policy to follow to reduce uncertainty in its belief.

129





7
Deep Active Perception

7.1 Introduction

The previous chapters focused on decision-theoretic methods for active perception that
require a learned model of the world. Commonly referred to as model-based reinforce-
ment learning or planning methods, these methods require the probabilities of the real-
world events expressed by a model of the world [Sutton and Barto, 1998]. However,
modelling real-life problems often requires expert knowledge of multiple domains and
even then, in many cases the best models are limited in their representations and ex-
pressions of the real-world complexities. Model-free reinforcement learning methods
like Q-learning aim to directly learn the optimal policy without explicitly modelling the
world [Watkins, 1989]. Deep reinforcement learning [Mnih et al., 2015] combines rein-
forcement learning with representation learning [Bengio et al., 2013] to learn efficient
representations of the world and the optimal policy directly from the raw sensor data and
from the interaction of the agent with the world enabling an end-to-end approach. In
this chapter we present a deep neural network architecture for active perception based
on deep reinforcement learning that enables an agent to learn the optimal behaviour for
reducing uncertainty in its belief. We present Deep Anticipatory Networks (DANs): a
deep neural network architecture that enables an agent to take actions to reduce its un-
certainty about its current and future states. DAN consists of two neural networks: a Q

network that outputs the Q values of each available action for an agent and a model, M
network, that predicts the state of the world based on some partial observations/glimpses
of the world. The agent follows the policy that is greedy with respect to the Q values that
are generated by the Q network. The main idea behind DAN is to train the Q network
on a reward function such that the Q network is rewarded if and only if the M network
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correctly predicts the state of the world from the partial glimpses collected by the pol-
icy generated by the Q network. The M network is trained to predict the current state
of the world based on the partial observations/glimpses collected by the Q network in a
supervised fashion given some ground truth data.

Ideally, an end-to-end approach should require minimal supervision from the human
user, even in terms of the reward function used to train the network, for example, when
training an agent to play ATARI games it is possible to signal the agent if it won or lost
without explicit human supervision [Mnih et al., 2015]. However, person tracking largely
remains a supervised learning problem where an annotated dataset of true positions of
people is important to cross-validate if the agent correctly predicted the true state or not.
Consequently, for training DAN for sensor selection for tracking we assume a dataset of
ground truth annotations is available. For the sensor selection problem such a dataset can
be collected by investing a one time effort offline to process/transfer the images from all
the sensors accurately and in high quality to yield the true positions of people in the entire
scene. The result of this processing can be used as a ground truth dataset to train the DAN
architecture to learn deep representations and the optimal policy for the sensor selection
task. We assume access to such a dataset is available to train DAN in a similar fashion to
Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] by simultaneously
training the Q and the M network on small mini-batches of data. By simultaneously
training the Q and M network we hope that the Q and M network will simultaneously
learn efficient representations that are useful to take actions and to correctly predict the
state of the world respectively. Finally, we apply DAN to learn the optimal policy for
the sensor selection task where an agent at each time step must select one of out of the n

available sensors to best track people in a simulated problem.

In the rest of the chapter we give a small background of deep reinforcement learning
methods. This is followed by the description of the DAN architecture and its training
procedure and finally the experiments.

7.2 Deep Q Learning

Reinforcement learning methods enable an agent to directly learn ⇡⇤ from the interaction
of the agent with the environment. The basic idea behind reinforcement learning is to
estimate the Q values of each action of the agent by using the Bellman equation as an
iterative update. For example, Q-learning in each iteration m (Q0 can be initialized
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randomly) performs the following update:

Qm+1(b, A) = [

target valuez }| {
⇢(b) + max

A0
Qm(bAz , A0)�Qm(b, A)]. (7.1)

After a number of iterations (for large m) the Q-estimates, in practice, converge to a
close approximation of Q⇤ (for a fixed t and hence t is omitted from the notation).

Deep reinforcement learning methods like deep Q networks (DQN) (or deep Q learn-
ing) combine reinforcement learning with deep neural networks to learn hidden repre-
sentations of the world and the control policy ⇡⇤ simultaneously. Deep neural networks
are composed of multiple layers of linear and non-linear operators parametrized by a set
of weights denoted by ✓. Given some training data in the form of inputs and outputs these
networks can be trained to approximately learn the relationship between the inputs and
outputs. For example, let bt = hA0, z1, . . . , At�1, zt

i denote the history of actions and
observations that the agent has obtained until time step t. Given a dataset of hbt, At

i pairs
as inputs and the Q-value of each hbt, At

i pair as the outputs a deep neural network can
be trained to learn the underlying Q function approximately. DQN combines the training
of deep neural networks with Q learning to learn the underlying Q function directly from
the experience of the agent.

If ✓ denotes the parameters of the neural network then the Q function can be denoted
by Q(bt, At

|✓). Instead of updating the individual Q values as in Q learning, now the
parameters ✓ can be updated iteratively based on a loss function:

L(bt, At
|✓m) = Ebt,At [⇢(bt) + max

A0t
Q(bt+1, A0t

|✓m)�Q(bt, At
|✓m)], (7.2)

✓m+1 = ✓m + ↵r✓L(✓m), (7.3)

where r✓L(✓m) denotes the gradient of the loss function with respect to ✓ and ↵ de-
notes the learning rate. The above described update of ✓ based on the expected value of
gradient across all possible hbt, At

i is called the gradient descent algorithm. Since it is
computationally expensive to compute the expected gradient across all possible values of
hbt, At

i pairs, stochastic gradient descent approximates the expected gradient by evalu-
ating it over a small set of data and is observed to perform well for training deep neural
networks in practice.

Deep reinforcement learning removes the need to engineer complex features by com-
bining representation learning with reinforcement learning algorithms. For example,
DQNs are able to learn control policies for playing Atari games directly from the raw
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pixel data frames [Mnih et al., 2013]. DQN consists of many convolutional layers stacked
on top of some fully connected layers that output the Q values of the actions available to
the agent given as input a history of the last few data frames of the game. These networks
can be trained end-to-end to learn efficient representations of the state and the optimal
policy.

To stabilize training DQN uses the following three techniques. First, the experience
of the agent is stored in an experience replay buffer in the form of an experience tuple
hbt, At, rt+1, bt+1

i, where rt+1 is the immediate reward obtained by the agent for taking
action A

t in belief bt and transitioning to belief bt+1. To update the parameters ✓ a
random mini batch of experience tuples is drawn from the experience replay and ✓ is
updated according to the equations 7.2 and 7.3. This is to remove the correlation between
sequentially obtained samples as stochastic gradient descent works best when the data
is i.i.d (independent and identically distributed). Second, a separate target Q network
(separate instance of the main Q network) is maintained to provide the target values for
updating ✓, except that its parameters are updated to match the parameters of the main
network every few iterations. This is done to avoid constant shifting of the target value
and to provide a constant and stable target value to update ✓, the parameters of the main
Q network. Third, an adaptive rate of learning ↵ is used instead of a fixed scalar value.

Deep Recurrent Q Networks

Deep recurrent Q networks (DRQN) [Hausknecht and Stone, 2015] extend DQN by
adding a recurrent unit, specifically long-short term memory (LSTM) [Hochreiter and
Schmidhuber, 1997], to the original architecture of DQN. The recurrent unit can be
trained to summarize the history of observations and actions. Instead of a history of
the last few data frames as input to the network, the input to DRQN is only the immedi-
ate past data frame. The agent effectively learns to maintain a hidden representation of
the world via the recurrent unit and takes actions dependent on the output of the recurrent
unit to maximize the reward.

In general, existing applications of deep reinforcement learning focus on tasks that
express the goal of the agent via a state based reward function. For active perception
the aim of the agent is to reduce uncertainty in its future belief as an end goal, thus
the reward function is solely a function of the future beliefs of the agent, ⇢(bt). The
main forte of deep reinforcement learning methods such as DQN and DRQN is that they
learn a deep hidden representation of the state of the world from the raw input. Since
an explicit representation of the belief of the agent is not available in this case it is not
possible to quantify the uncertainty in the belief of the agent. To tackle this problem we
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introduce DAN that addresses a broad class of problems where the aim of the agent is to
take actions to best predict the current or future state of the world.

7.3 Deep Anticipatory Networks

In this section we introduce DANs: Deep Anticipatory Networks. DAN is named so
because it enables an agent to take actions to anticipate the future state of the world
accurately. Continuing from the earlier formulation, the goal of the agent is to take
actions such that they maximize the information gain of the agent. However, without
an explicit belief and model of the world it is not possible to compute the information
gain of each action of the agent to find the one that has the maximum information gain.
To tackle this challenge we propose DAN. DAN consists of two different networks (or
agents): a Q network and a model (M) network. The role of the Q network is to take
as input the history of previous observations and actions of the agent and output the Q
values of all available actions of the agent. The role of the model network is to take as
input the previous observation-action history of the agent and predict the future state of
the world. The M network is trained in a supervised fashion with the data that is collected
by the agent while following the policy ⇡ generated by the Q network. If the M network
predicts the state of the world correctly then the Q network is rewarded +1 else if the
model network predicts the state of the world incorrectly then the Q network is punished
or rewarded 0. Finally, the input to the model network is guided by a policy that is greedy
with respect to the Q function that is the output of the Q network.

In other words, the Q network is rewarded for learning a Q function that promotes
actions that helps the model network to learn a model of the world that can from partial
observations predict the true state of the world. Figure 7.1 illustrates an abstract DAN.
At each time step, the history of observations and actions are fed to the Q network, the
Q network in turn outputs the Q values of each action and the agent takes the action with
the highest Q value and gets an observation. This action and observation along with the
history of the previous actions and observations are fed into the M network that predicts
the state of the world (or it can be any other variable) and if the prediction made by the
M network is correct then the Q network receives a reward of +1 or else the Q network
gets a negative (-1) or 0 reward. As in active perception tasks the aim of the agent is to
reduce the uncertainty in its belief as an end goal, this process goes on forever.

Note that this formulation is closely related to POMDP-IR. Here the M network can
be seen as the network that models the prediction actions in POMDP-IR. The M network
in the above described DAN can be augmented with multiple prediction actions that give
the agent a choice to commit or to not commit fully to a particular state and instead
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Figure 7.1: An abstract model of DAN that consists of a Q network (or agent) and a
M network (or agent). The Q network controls the input to the M network and the M
network controls the reward Q network gets.

say ‘I do not know’ when it is not confident of its prediction. The Q network in that
case can be rewarded a small positive reward. The Q network is the part of POMDP-IR
that enables the agent to identify the normal sensory actions that best help the agent to
minimize the uncertainty in the hidden belief of the M network. As shown in Chapter 3,
such a POMDP-IR agent, in principal, approximately maximizes the negative conditional
entropy. While we do not provide a formal proof that such a result also holds for DANs,
this is the main intuition behind DANs and the claim that they are designed to maximize
the information gain of a hidden abstract belief of the agent.

7.4 Training DAN

DAN is trained in a similar fashion to generative adversarial networks (GANs) as in both
the Q and the M networks are trained simultaneously on small mini batches of data. Since
one of the component in DAN is a DQN we additionally borrow the techniques used to
train DQN to train DAN. Specifically, each belief-action pair that the agent encounters is
stored in an experience buffer to be sampled later to train both the Q and the M network.
Moreover, we also maintain two separate target networks for Q and M networks to get
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stable target values when updating the Q network. The exact algorithm is shown in
Algorithm 10. Let ✓Q and ✓M denote the parameters of the Q network and the M network
respectively.

Algorithm 10 Train-DAN
1: Initialize ✓Q and ✓M randomly.
2: Initialize experience replay.
3: for m = 1!1 do
4: for t = 1 to length of episode do
5: Execute A

t = maxA2A+ Q(bt, A|✓Q) or take a random action with proba-
bility ✏.

6: Observe zt+1 and update bt+1

7: Observe reward rt+1 = f(targetM(bt+1
|✓targetM), st+1).

8: Add the experience tuple hbt, At, rt+1, bt+1, st+1
i to the experience replay.

9: Sample random mini-batch of data from the experience tuple.
10: Update ✓Q according to equations 7.2 and 7.3.
11: Update ✓M according to equations 7.4 and 7.6
12: end for
13: if update target = True then: // update target can be set to be True every few iterations
14: update target Q parameters with ✓Q
15: update target M parameters with ✓M
16: end if
17: end for

For the purpose of training we assume access to a dataset with annotated true position
of the person walking in the scene. In each iteration of the algorithm, for each episode,
the agent follows the policy that is greedy with respect to the Q values that the Q network
outputs. This experience accumulated by the agent is added to the experience buffer in the
form of the tuple hbt, At, rt+1, bt+1, st+1

i that is later used to train the Q network. The
observations zt+1and the true state st+1 are obtained from the dataset while the reward
rt+1 is obtained from the target M network. rt+1 is defined as 1 if the target M network
correctly predicts the true state else rt+1 is zero. At each time step, the agent samples
random experience tuples from the experience buffer and updates ✓Q according to the
Equations 7.2 and 7.3. Note that the target value in Equation 7.2 is obtained from the
target M and target Q network and not the main Q and M network. Every few iterations
the target Q and the target M network are updated with ✓Q and ✓M as parameters.

Once ✓Q is updated, ✓M is updated as well by performing a gradient descent update
with cross entropy loss:

L = cross-entropy(M(bt
|✓M), s

t+1), (7.4)
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Figure 7.2: Performance comparison between randomly collecting partial observations
to train the M network to predict the state of the world vs using a policy obtained by
updating the Q network in the DAN architecture. The y-axis shows the mean reward
over the last 440 episodes.

ideas from training DQN, DRQN and GANs so that the two separate networks in the
DAN agent are trained separately but simultaneously. Experiments on a simulated set-
ting demonstrate that its possible to train DAN such that the Q networks takes actions so
that the M network is able to better predict the state of the world.

The results presented in this chapter are on a small simulated setting. While these
results still demonstrate the potential possibilities of applying DAN to many tasks, they
do not say anything about how useful DANs are when applied in real-life settings. Thus,
the first and a natural task for future work is to train DAN on a real-life setting, for
example, on the sensor selection task considered in other chapters of this thesis. Another
enhancement that is quite clear from the DAN architecture described in the experiments
is to share some of the representations and updates between the Q and M network. Since
both Q and the M network almost share the same inputs, it is possible for them to share
the same representations by sharing a big portion of the parameters ✓Q and ✓M. It is also
possible to train the DAN architecture with shared parameters with shared updates to the
parameters.

While it might be possible to train the DAN architecture by training the Q and M

network together with a shared objective that can be expressed in terms of a loss func-
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tion that is a weighted sum of individual loss function of the Q and the M network, we
believe that the separation between the Q and M network leads to a better modularity.
For example, the M network can well be a human that provides the reward to an agent as
in the case of a human operator monitoring multiple feeds from a multi-camera network
and the Q network can then be trained accordingly. The Q network in DAN can also be
easily replaced with any other deep reinforcement learning methods such as actor-critic
[Mnih et al., 2016] or policy gradients [Sutton et al., 2000, Silver et al., 2014, Ciosek
and Whiteson, 2017]. Moreover, the DAN architecture introduces a general notion of co-
operation between two agents to train themselves to achieve their own respective tasks
that can be potentially applied in other settings such as active learning [Gal et al., 2017],
meta-learning [Andrychowicz et al., 2016] or multi-agent settings [Foerster et al., 2017].

Finally, as mentioned in earlier chapters, one of the key challenges for active per-
ception is large action spaces. While this chapter does not deal with large action space
specifically, augmenting DANs to deal with it would be an important and may be an es-
sential addition for practical problems. Dealing with large discrete action spaces remains
a challenge in reinforcement learning and combining DANs with approximate maximiza-
tion techniques such as greedy and stochastic greedy maximization is an interesting and
non-trivial challenge.
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In this chapter we contrast the contributions of this thesis with the existing literature.
We start with a broad overview of the existing methods for active perception and sensor
selection. Next, we describe the existing POMDP planning methods and their limitations
when applied to active perception POMDPs. This is followed by a brief account of the
existing methods for submodular function maximization in the offline and online setting.
Finally, we contrast our approach from recently developed deep visual attention models
and deep reinforcement learning methods.

8.1 Active Perception and Sensor Selection

Active perception is a broad concept and encompasses a variety of problems, example,
sensor alignment [Allen and Bajcsy, 1985], temporal or scene selection [Kelly, 1971, Ye
and Tsotsos, 1995], active localization [Burgard et al., 1997], viewpoint selection [Wilkes
and Tsotsos, 1992, Bruce and Tsotsos, 2009], control of memory [Oh et al., 2016] and
visual attention [Borji and Itti, 2013, Mnih et al., 2014]. Bajcsy et al. [2016] provide an
overview of the recent successes of active preception in robotics and computer vision.
The common theme to many of the active perception problems is the efficient allocation
of scarce resources to minimize uncertainty over a hidden variable. However, the appli-
cation of submodular function maximization for active perception, to our knowledge, is
limited. Hollinger et al. [2012] and Hollinger and Sukhatme [2013] exploit submodular-
ity to propose policies for automatic underwater navigation for collecting oceanographic
data and robot motion respectively. Taniguchi et al. [2015] perform greedy maximiza-
tion of information gain for object recognition. Similarly, Le et al. [2008] employ greedy
viewpoint selection for object detection for robots via interactive manipulation. However,
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a POMDP formulation that can reason about the long-term consequences, as we propose
in Chapter 4, is missing from these approaches. The application of submodularity for
long term POMDP planning is limited to our knowledge and we believe we are the first
to combine long-term POMDP planning with submodularity for active perception.

This thesis focusses on sensor selection as an active perception task for tracking peo-
ple or maintaining surveillance in large public spaces. Sensor selection has been stud-
ied in multiple contexts [Hero and Cochran, 2011, Monari and Kroschel, 2010, Tessens
et al., 2014]. Earlier work focusses on either small simulated problems or myopic solu-
tions, e.g., [Kreucher et al., 2005, Williams et al., 2007, Spaan and Lima, 2009, Joshi and
Boyd, 2009, Monari and Kroschel, 2010]. In general, application of POMDP planning
methods for the sensor selection task, especially for large real world problems is quite
limited in the current literature. Kreucher et al. [2005] propose an adaptive sampling
technique based on particle filters for sensor management. Williams et al. [2007] present
an approach based on approximate dynamic programming for computing a policy for
sensor scheduling. However, these approaches are limited to small simulated settings
and do not attempt to learn the parameters of the model they propose or scale their meth-
ods to real world problems. The same is true for Joshi and Boyd [2009] that present a
heuristic based on convex optimization for sensor selection to estimate a hidden variable
that is a linear combination of the measurements received from the selected sensors. We
make no such assumption. Other approaches based on information-theoretic heuristics
[Gupta et al., 2007] also do not exploit the POMDP framework or submodularity as we
do to scale greedy PBVI in the action space.

In contrast to these approaches, a POMDP-based approach leads to an informed pol-
icy as the agent can learn the model or policy from historical data and use the POMDP
model to compute a non-myopic policy for the sensor selection. While a non-myopic
approach might give only a marginal benefit for sensor selection; however, as the experi-
ments in Chapter 4 showed that in a budget-based setting or in settings involving mobile
robots, non-myopic planning is useful. Ji et al. [2007], Spaan [2008], Spaan and Lima
[2009], Spaan et al. [2015] and Natarajan et al. [2012] consider a POMDP-based ap-
proach to active and cooperative active perception. However, they consider an objective
function that conditions on the state and not on the belief, as belief-dependent rewards in
POMDPs break the PWLC property of the value function. They use point-based meth-
ods [Spaan and Vlassis, 2005] for solving POMDPs. While recent point-based methods
[Shani et al., 2012] for solving POMDPs scale reasonably in the state space of POMDPs,
they do not address the scalability in the action and observation space of a POMDP as
the methods described in this thesis do. Similarly, Krishnamurthy and Djonin [2007]
consider a POMDP based approach for sensor selection where the reward is not linear in
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the belief, however, they do not address the issue of scalability in the action space of the
POMDP they propose. Kumar and Zilberstein [2009] focus on a noiseless setting and
a ‘detection’ based reward for sensor selection while we model the observation noise in
sensors and reward the agent for collecting more information.

Traditionally, formulating the reward function in a POMDP as a function of belief
was not possible. ⇢POMDP and POMDP-IR are two frameworks that allow a belief-
based formulation of the reward function in a POMDP. In Chapter 3, we establish the
equivalence of these two frameworks and give a detailed empirical analysis of belief-
based rewards in POMDPs which was missing until now in the literature. Previous work
on belief-based rewards such as Eck and Soh [2012] provide an intuitive/empirical com-
parison between belief-based rewards and state based rewards for a simulated task of
classifying mines. Araya-López et al. [2012] propose the use of belief-based rewards in
POMDPs for active learning. However, none of this work provides the insights that we
provide in Chapter 3, that ⇢POMDP and POMDP-IR are equivalent frameworks and that
the belief-based rewards do not cause any additional computational cost when compared
to the same size POMDP with state-based rewards.

8.2 POMDP Planning

Exact POMDP planners such as proposed in Sondik [1971], Monahan [1982], Kaelbling
et al. [1998] are limited to small POMDPs because of their computational cost. Point-
based methods [Spaan and Vlassis, 2005, Pineau et al., 2006, Kurniawati et al., 2008,
2011, Shani et al., 2012] however have made it possible to solve POMDPs with large state
spaces. The main idea here is to sample a subset of the possible beliefs and compute the
optimal value function only for the beliefs that are in sampled subset of beliefs. However,
existing point-based methods do not address the scalability in the action space of the
POMDPs. By exploiting greedy maximization, greedy PBVI scales better in the action
space of the active perception POMDP. Other POMDP planning methods such as those
based on heuristic search [Smith and Simmons, 2004] do not necessarily target scalability
in the action or observation space, instead they may involve an argmax over the action
space to find the action that maximizes the upper/lower bound on the value function,
which in our case is not possible. In general, point-based methods [Spaan and Vlassis,
2005, Shani et al., 2007, Poupart et al., 2011] differ in their belief collection method
but perform an argmax over the entire action space which is not possible for the active
perception POMDP.

Monte Carlo methods for offline planning such as Monte Carlo POMDPs [Thrun,
2000] and Monte Carlo value iteration [Bai et al., 2010] can handle large state and ob-
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servation spaces in principle, maybe even large action spaces. However, their application
on real-life problems with large POMDPs is still limited. Moreover, these methods are
designed to address the state-based rewards. Their extension to belief-based rewards can
be tricky especially for information-theoretic definitions since estimating information-
theoretic rewards is not a straightforward task as shown in Chapter 5.

Online planning methods [Ross et al., 2008] like bandit-based Monte Carlo planning
[Kocsis and Szepesvári, 2006, Silver and Veness, 2010] can also potentially handle large
size POMDPs. However, existing methods do not explicitly address the combinatorial
action space of the active perception POMDP. Our methods such as PartiMax and PAC
greedy maximization can be easily integrated with Monte-Carlo planning to yield an even
more efficient online planner.

The application of submodularity is gaining popularity in recent years for MDP plan-
ning in tasks other than sensor selection. Recently, David et al. [2016] and Kumar et al.
[2017] proposed algorithms that exploit greedy maximization for MDP planning. David
et al. [2016] propose greedy value iteration for one-shot recommendation systems. Ku-
mar et al. [2017] use greedy maximization for decentralized planning for multi-agent
systems with submodular rewards.

8.3 Submodular Function Maximization

Krause and Golovin [2014] provide a detailed survey on submodular function maximiza-
tion. As submodularity is a natural and frequently occuring property, it applications are
ubiquotous, for example, sensor deployment [Krause and Guestrin, 2005b], text sum-
marization [Takamura and Okumura, 2009, Li et al., 2012], active learning [Chen and
Krause, 2013], etc. Most work on submodular function maximization focuses on algo-
rithms for approximate greedy maximization that minimize the number of evaluations
of the submodular function Q [Minoux, 1978, Badanidiyuru and Vondrák, 2014, Mirza-
soleiman et al., 2015]. In particular, Mirzasoleiman et al. [2015] sample a random sub-
set of X on each iteration and selects the element from this subset that maximizes the
marginal gain. Badanidiyuru and Vondrák [2014] select an element on each iteration
whose marginal gain exceeds a certain threshold. Other proposed methods that maxi-
mize surrogate submodular functions [Wei et al., 2014, Chen and Krause, 2013] or ad-
dress streaming [Krause and Gomes, 2010] or distributed settings [Mirzasoleiman et al.,
2013], also assume access to the exact Q. Most of these works can be combined with
greedy PBVI to extend them to long-term sequential decision making.

PAC greedy maximization, proposed in Chapter 5, is different from these methods
as it does not assume that the submodular function Q can be computed exactly which is
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a prerequisite for most of the above mentioned methods. Streeter and Golovin [2009],
Radlinski et al. [2008] and Yue and Guestrin [2011] propose conceptually related meth-
ods that also assume Q is never computed exactly. However, their online setting is fun-
damentally different in that the system must first select an entire subset A 2 A

+ and
only then receives an estimate of Q(A), as well as estimates of the marginal gain of the
elements in A. Since the system learns over time how to maximize Q, it is a variation
on the multi-armed bandit setting. By contrast, in Chapter 5, we assume that feedback
about a given element’s marginal gain is available (through tightening U and L) before
committing to that element. Singla et al. [2016] also propose PAC maximization of sub-
modular function. They propose an efficient algorithm that in each iteration of greedy
maximization adds to the partial solution an element that maximizes the marginal gain
with high probability. However, they assume access to an unbiased estimator of the func-
tion Q to get the upper and lower confidence bounds, we instead, propose new upper and
lower confidence bounds, since in our setting such an estimator is not available.

PAC greedy maximization is closely related to best arm identification algorithms
[Audibert and Bubeck, 2010]. However, such methods assume an unbiased estimator of
Q is available and hence concentration inequalities like Hoeffding’s inequality [Hoeffd-
ing, 1963] are applicable. An exception is the work of Loh and Nowozin [2013], which
bounds the difference between an entropy estimate and that estimates expected value.
However, since the entropy estimator is biased, this does not yield confidence bounds
with respect to the true entropy. While they propose using their bounds for best arm
identification, no guarantees are provided, and would be hard to obtain since the bias in
estimating entropy has not been addressed. However, their bounds [Loh and Nowozin,
2013, Corollary 2] could be used in place of Theorem 13. While other work proposes
more accurate estimators for entropy [Paninski, 2003, Schürmann, 2004, Ho et al., 2010,
Nowozin, 2012a], they are not necessarily computationally efficient and thus not directly
useful for PAC greedy maximization.

Finally, Conforti and Cornuéjols [1984] and Sharma et al. [2015] present alternate
tight theoretical bounds on submodular maximization of entropy that explains the good
performance of greedy maximization for maximizing information-theoretic quantities.
While we have relied throughout on the popular result of Nemhauser et al. [1978], these
bounds can be combined with the ideas that we presented to propose even tighter theoret-
ical bounds for our methods. Fisher et al. [1978] extends the results of Nemhauser et al.
[1978] to combinatorial structures such as matroids. When the POMDP action space is
modelled as matroids greedy PBVI can be altered accordingly to extend these bounds
to POMDP setting. We present one such case when we model the action space of the
POMDP as a partition matroid in Chapter 4, section 4.2.
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Adaptive submodularity [Golovin and Krause, 2011] is a recently developed exten-
sion that allows action selection to condition on previous observations [Chen et al., 2017].
However, it assumes a static state and thus cannot model the dynamics of a POMDP
across time steps. Therefore, for sensor selection, adaptive submodularity is only appli-
cable within a time step, during which state does not change but the agent can sequentially
add sensors to a set. In principle, adaptive submodularity could enable this intra-time step
sequential process to be adaptive, i.e., the choice of later sensors could condition on the
observations generated by earlier sensors. However, this is not possible in our setting
because (a) we assume that, due to computational costs, all sensors must be selected si-
multaneously; (b) information gain is not known to be adaptive submodular [Chen et al.,
2015]. Consequently, our analysis for greedy PBVI, PAC greedy maximization and Par-
tiMax considers only classic, non-adaptive submodularity.

Finally, greedy maximization is known to be robust to noise [Streeter and
Golovin, 2009, Krause and Golovin, 2014]: if instead of selecting iG =

argmaxi2X\AG �(i|AG), we selects i0 such that �(i0|AG) � �(iG|A
G) � ✏1, the

total error is bounded by ✏ = k✏1. We exploit this property in Chapter 5 but use
confidence bounds to introduce a probabilistic element, such that with high probability
�(iP |A

G) � �(iG|A
G)� ✏1.

8.4 Visual Attention and Tracking

In general, most detection and tracking systems, e.g., Dalal and Triggs [2005], Felzen-
szwalb et al. [2010], Dollár et al. [2014], Benenson et al. [2014], including those based
on convolutional neural networks [Girshick et al., 2014, Sermanet et al., 2014, Tian et al.,
2015, Redmon et al., 2016], work by processing the entire image. However, visual atten-
tion models [Tsotsos and Shubina, 2010, Kootstra, 2010, Mnih et al., 2014] that selec-
tively process only a part of an image are quickly becoming a popular feature of percep-
tion modules. For detection systems, existing work on visual attention or active vision
identifies relevant regions of interest in an image [Kim et al., 2012], e.g., by generat-
ing proposals [Hosang et al., 2015] or saliency points [Bruce and Tsotsos, 2009, Shtrom
et al., 2013]. These methods, however, are based on the properties (or low-level features)
of the entire images. In contrast to these methods, PartiMax, proposed for tracking in
Chapter 6, exploits the information in the beliefs from previous time steps to select sen-
sors or pixel boxes for tracking people. Dellaert and Collins [1999] enable fast tracking
algorithms by selective pixel integration that is similar to PartiMax. However, they go
over the all possible subsets of pixels to maximize an information theoretic definition of
the utility function. PartiMax avoids going over all possible pixel boxes with a smart
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sampling algorithm that exploits the coverage based definition of particle coverage.
Recently developed neural models of visual attention [Mnih et al., 2014, Denil et al.,

2012] come close to the application we use PartiMax for. They are based on model-
free deep reinforcement learning methods to identify relevant region to apply a trained
detector on [Mnih et al., 2014]. In contrast to it PartiMax uses a learned model of the
world to plan online to find the relevant regions to which to apply a trained detector.

Our work in Chapter 6 exploits the vast existing sensor selection literature for visual
attention. Most work on sensor selection uses utility functions involving information
gain [Wang et al., 2005, Roy and Earnest, 2006] and expected coverage [Spaan, 2008],
which are too expensive for real-time systems. For real-time tracking we propose particle
coverage that is simple to integrate with particle filters and suited for real-time applica-
tions because of its low computational cost. Moreover, we propose PartiMax that is able
to very quickly maximize particle coverage resulting in an extremely efficient algorithm
for visual attention for tracking.

8.5 Deep Reinforcement Learning

Recently, many methods based on deep reinforcement learning such as DQN, asyn-
chronous actor critic (A3C) [Mnih et al., 2016] have been proposed that enable an agent
to learn a control policy in an end-to-end manner from raw sensor data that maximizes
the expected cumulative reward in an MDP. Most of the literature that exists on deep
reinforcement learning assumes a state based reward that the agent receives at the end of
the episode signalling whether the agent successfully completed the task or not. More-
over, most of these approaches consider an MDP formulation where the underlying state
is fully observable (except DRQN [Hausknecht and Stone, 2015] and neural attention
models [Mnih et al., 2014]). We, on the other hand, formulate the active perception task
as reducing uncertainty as the end goal in a continuously evolving environment under
partial observability. This is the main difference between our motivation and the exist-
ing work. DAN tackles the challenge associated with this formulation by separating the
sensing actions and prediction actions giving the agent the choice to identify deep repre-
sentations that are useful for predicting the hidden state even when only a little part of it
is observable.

The closest work to DANs is the use of prediction-based rewards for intrinsic curios-
ity [Pathak et al., 2017] and as auxiliary variables [Jaderberg et al., 2016]. Again, the
main difference here is that they use the prediction reward as a mean to train an agent
to learn to play Mario and vizdoom. The performance of the policy is evaluated on an
extrinsic state based ‘end’ reward instead of evaluating it in terms of number of cor-
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rect predictions. A key difference in terms of the architecture and training algorithm for
DANs and aforementioned approaches is that they train the agent as a whole entity with
the resulting loss function being the weighted sum of multiple loss functions. DANs on
the other hand ‘factorize’ this loss function into separate loss functions for the M net-
work and Q network. This factorization provides better modularity when it comes to
separating the representations that are useful to only Q or the M network and sharing
representations that are useful to both.

We apply DANs for sensor selection task to track people. This application is closely
related to attention models. Mnih et al. [2014] model the loss function as one conditioned
on an ‘end’ state based reward where the agent after selecting a number of glimpses of
an image of a digit must classify it correctly. Apart from this, there exists multiple subtle
but key differences between sensor selection and existing literature on neural attention
models. The current literature on attention is divided into models based on soft [Mnih
et al., 2014] and hard [Xu et al., 2015] attention. Soft attention models use a differen-
tiable function such as the sigmoid function to decide the probabilities over the region
that an agent should attend and these probabilities vary smoothly over the image, where
as hard attention models use non-differentiable switch like functions that change abruptly
over the image to decide what part of an image the agent attends ignoring completely the
rest. Sensor selection presents a ‘harder-than-hard’ attention case since the agent can
only attend the hidden scene with glimpses that offer fixed points of attention and that
cannot be resized. In contrast to this, for both soft attention and hard attention models the
agent can choose the points where to attend in an image and it can also adjust the size and
shape of the glimpse. In certain cases, the choice of the design of the attention glimpse
may lie with the user of the system, even in this cases, the glimpses can be designed in
favour of a tractable solution. However, for sensor selection the agent must select from
the fixed point of views that are available through the already deployed set of sensors.
This absence of the choice to select the point of attention or resize the glimpses available
to the agent makes it harder for the agent to predict the state of the world from the par-
tial observations. For certain multi-camera systems that involve pan-tilt-zoom cameras
it might be possible for the agent to resize the glimpses or change the field of view of
the cameras, however, the problem of selecting best operations out of pan, tilt and zoom
poses its own unique challenges that we do not focus on in this thesis.

Ondruska and Posner [2016] present an approach for tracking people with deep neural
networks, however, they do not employ an attention mechanism. Denil et al. [2012] try
to learn where to look in an image to track people, however, they follow a bandit based
approach instead of learning deep representations of the value function.

Many approaches [Le et al., 2008, Kostrikov et al., 2016] model active perception
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tasks with state based rewards that leads to an exploratory behaviour of the agent such
that it is able to take actions that help the agent to classify an object or digit in a hidden
image. These are again fundamentally different from our formulation.

DANs are modelled on a similar concept as GANs where two different networks are
trained on each other’s feedback. However, the GANs assume an adversarial relationship
between the two networks leading to a min-max formulation of the final objective, while
DANs lead to max-max formulation of the final objective.

Finally, DANs are related to learning in POMDPs/MDPs [James and Singh, 2009,
Katt et al., 2017], however, DAN are designed to learn hidden representations of the
world whereas previous approaches aim to learn the transition or observation function
after assuming/designing the representation of the world.
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9
Discussion and Future Work

9.1 Discussion

In this thesis we tackle the challenge of active perception for person tracking. We bor-
row from, and introduce new approaches in the sub fields of uncertainty approximation,
POMDP planning, submodular function maximization, visual attention with particle fil-
ters and model-free deep reinforcement learning. The common aim of the methods we
propose is active perception for tracking people. In summary, we present multiple meth-
ods that are tied, but not limited, by their application to active perception for tracking
people in multi-camera networks. Here we discuss the limitations and usefulness of each
method we propose. Table 9.1 provides a summary of the main strength and limitations
of the methods proposed in this thesis.

Greedy PBVI is a principled and theoretically sound approach that is most suitable
when the agent must compute the policy before executing the task and must plan long-
term. Greedy PBVI scales in the action space of a POMDP, however, large observation
spaces can prove to be a challenge for greedy PBVI. On the bright side for active percep-
tion POMDPs greedy PBVI performs almost optimally in practice (even if submodularity
is violated in practice).

PAC greedy maximization can handle large state, action and observation spaces while
working in real-time without loosing tracking performance. Ideally, PAC greedy maxi-
mization is most suited when there is little structure in the problem to exploit, that is, the
multiple sensors that the agent has to choose from are all very distinct and may lead to
multiple distinct possibilities in the future. For example, if each sensor that the agent has
the choice of selecting from, covers a distinct region and has a distinct noise model then
it is important to reason about all possibilities by simulating them. PAC greedy maxi-
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mization with its pruning scheme can quickly eliminate sub-optimal choices and hence
is suited for such scenes.

PartiMax exploits the structure in the tracking domain to boost the tracking perfor-
mance and save the computation time. By dividing a single image into pixel boxes of
equal sizes and similar noise models, PartiMax can afford to not reason about the noise
models of these pixel boxes and still perform spectacularly even in the presence of noise.
In fact, of all the methods we propose PartiMax results in lowest computation time with
good tracking performance because it exploits the structure in the problem smartly. While
PartiMax as an algorithm is customised to tracking people with particle filters, we give
general theoretical guarantees for combinatorial optimization that are uniquely indepen-
dent of the problem size.

Finally, if it is not possible to manually model the world and learn this model, DANs
offer a model-free option that is directly deployable given enough computational re-
sources and some ground truth data. DAN works on the principal of model-free deep
reinforcement learning methods and thus does not require complex model to learn a pol-
icy that can select sensors to track people. While we show experimental results on DAN
in a small simulated setting, given the current progress in the field of deep reinforcement
learning, it will not be surprising if DANs performs well on real-life problems.

9.2 Future Work

Since this thesis ties together r methods from multiple sub fields of machine learning
there are multiple directions for future research.

Entropy representation and approximation is a fundamental research topic in
decision-making and probabilistic inference. It is also a common theme of this thesis
that is encountered in almost every chapter. Building upon these methods for better
entropy approximation is an exciting line of research for the future. For example, es-
timating entropy from samples is known to be a challenging problem [Paninski, 2003].
However, there are not many approaches in literature that deal with entropy estimation
specifically for decision making. Specifically, estimating the difference in the entropy
of two probabilities distribution as compared to estimating the entropies of each one of
them individually is a different problem that has numerous applications.

Submodular function maximization is a popular topic in machine learning and has
multiple applications [Krause and Golovin, 2014]. Information gathering and submodu-
lar function maximization tie together invariably. Recently many algorithms have been
proposed for efficient submodular function maximization under various settings [Mirza-
soleiman et al., 2017, Stan et al., 2017]. The setting that is most relevant to active per-
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Table 9.1: Strengths and limitations of the methods presented in this thesis.

Method and description Main strength Main limitation
Greedy PBVI (Ch. 4) is
an offline POMDP plan-
ner.

Greedy PBVI scales bet-
ter in the action space of
a POMDP and performs
well in practice.

The performance of
greedy PBVI may depend
on the submodularity of
the value function of the
POMDP.

PAC greedy maximiza-
tion (Ch. 5) of submodu-
lar functions.

PAC GM scales to large
submodular maximization
problems by quickly
eliminating sub-optimal
choices from the many
available choices.

PAC GM may require a
fair amount of parameter
tuning to find the right bal-
ance between the compu-
tational cost and accuracy
of the solution.

PartiMax (Ch. 6) is a
tracking system built on
top of particle filters.

PartiMax exploits struc-
ture in the tracking do-
main to run as a resource
efficient tracker. In prin-
cipal, PartiMax is guaran-
teed to perform well for
all tracking problems irre-
spective of their size.

Application of PartiMax
to other domains may re-
quire a few modifications
to the original algorithm.

DAN (Ch. 7): a deep
neural network architec-
ture for model free active
perception.

DANs do not require an
explicit representation or
model of the world for
computing the policy for
sensor selection.

Performance of DAN on
real-life dataset/systems is
yet to be seen.
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ception is sequential maximization of submodular functions or optimizing submodular
functions that are drawn from some unknown distribution [Stan et al., 2017]. Recently,
this problem was formulated as a case of two-stage submodular function maximization
where the ground set of items is reduced to a smaller set given training examples of the
submodular functions. The problem is finally defined as selecting the reduced set that
maximizes the expected value of the submodular function. Sensor selection is a fantastic
application of such a method where the submodular functions are drawn from a proba-
bility distribution that is parametrised by the belief of the agent. However, assembling
a dataset of submodular functions with full feedback (that is the value of each possible
subset of the ground set) is not an easy task and in many settings bandit feedback is read-
ily available instead of a complete feedback. Thus, extending these methods to the bandit
feedback in an online setting is an exciting idea. Such an approach may tie closely with
learning submodular functions, which are provably difficult to learn in traditional set-
tings [Balcan and Harvey, 2011, Yue and Guestrin, 2011]. By exploiting the additional
information in the previous beliefs in a sequential setting it might be possible to relax
this problem. Finally, application of submodular reward functions for MDP/POMDP
planning [David et al., 2016], including decentralised planning for multi-agent settings
[Kumar et al., 2017], is gaining attention in current literature and naturally provides an
interesting direction for future research.

For model free active perception we introduce DANs. While the current chapter on
DANs lacks a thorough empirical analysis, conducting experiments that investigate the
expressive power of DANs is a natural next step. Positive results can open multiple
opportunities for future research direction, for example, improving the DAN architecture
or improved training algorithms for DAN. Combining model-based and model-free RL
[Gelly and Silver, 2007, Farquhar et al., 2017], both of which we present in this thesis,
for active perception or for solving POMDPs with large action space is another attractive
avenue.

On a different note an interesting direction for future research is human-in-the-loop
RL [Mandel et al., 2017]. DANs especially can be used to directly learn a good pol-
icy that can integrate human feedback to optimize the performance of the system. By
imagining one of the networks in the DAN architecture to be a human it is possible to
learn the optimal behaviour of the other network directly through its experience with the
human. It is common practice for security guards to monitor security cameras to main-
tain surveillance in large public spaces. These are natural settings for application of our
methods that can be augmented with methods from human-in-the-loop RL.

The methods presented in this thesis have been shown to scale to problems of large
sizes, thus, a natural application for them is real-time strategy games where an agent
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must select one of the many possible actions in real-time to accomplish certain objec-
tives [Ontañón, 2017]. Also, methods presented in this thesis are directly applicable to
model and data subset selection [Kirchhoff and Bilmes, 2014]. Search engines can also
benefit from the submodular/combinatorial approach of this thesis [David et al., 2016]
apart from the usual applications of submodular functions such as sensor placement, text
summarization, active learning, influence maximization for marketing, etc.
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This thesis tackles the question of ‘how can an agent controlling a multi-camera net-
work allocate its own resources?’. We focus on the task of maintaining surveillance in
large public spaces with multi-camera networks and model this problem as an active
perception POMDP where the agent at each time step must select k out of the n avail-
able cameras/sensors to allocate scarce resources to reduce uncertainty over the state of
the world. Formulating uncertainty reduction as an end in itself is a challenging task,
as it breaks the PWLC property of the value function, which is imperative for solving
POMDPs efficiently. ⇢POMDP and POMDP-IR are two frameworks that allow formu-
lating uncertainty reduction as an end in itself and do not break the PWLC property. We
show that ⇢POMDP and POMDP-IR are two equivalent frameworks and the results that
apply to one framework are also applicable to the other.

To tackle the challenges of long-term planning, combinatorial action space and large
state spaces we propose multiple methods. To scale POMDP planning to the combi-
natorial action space of the active perception POMDP, we propose greedy PBVI that
uses greedy maximization instead of full maximization to scale in the action space of
the active perception POMDP. By exploiting the theory of submodularity we show that
greedy PBVI is guaranteed to have bounded error. We establish the sufficient condi-
tions for the value function of an active perception POMDP to be submodular. To scale
greedy maximization to large state spaces (in addition to combinatorial action spaces),
we propose PAC greedy maximization for submodular function maximization. Instead
of assuming oracle access to the submodular function, PAC greedy maximization uses
upper and lower confidence bounds on the submodular function to maximize it. Since
it is not straightforward to obtain computationally cheap confidence bounds on informa-
tion gain we propose new cheap confidence bounds on information gain for PAC greedy
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maximization. To track people in ultra-high resolution images we propose a new track-
ing system PartiMax that exploits the information in the previous beliefs of an agent to
quickly identify the most relevant region in an ultra high resolution image to process to
track people. Furthermore, we give error bounds for PartiMax that are crucially inde-
pendent of the problem size. Finally, we present deep anticipatory networks that enable
an agent to learn deep representations of the world to predict the future states from the
partial observations of the world.

The empirical analysis in Chapter 3 establishes the critical factors for active per-
ception tasks. We show that long term planning beats short term planning for tracking
people, however, the gain was observed to be marginal, except for cases involving mo-
bile robots or budgeted settings. Experiments on real-world dataset showed that greedy
PBVI performs similar to existing methods but requires only a fraction of the computa-
tional cost, leading to much better scalability for solving active perception tasks. Simi-
larly, experiments comparing PAC greedy maximization with greedy maximization show
that as k increases PAC greedy maximization scales better than greedy maximization for
maximizing a submodular function. We show that PartiMax retains 80% of the original
tracking performance while processing only 10% of the image, thus, enabling tracking
people in large ultra high resolution images. Finally, we show that DAN can potentially
learn a good policy for active perception in a model free manner that removes the need
to explicitly design and learn the model of the world. However, performance of DAN on
real-world problems is yet to be seen.

In conclusion, this thesis presents multiple methods for active perception. The main
premise of the thesis is the information gathering as an end task. Learning and apply-
ing strategies for information gathering, remembering important details, focussing and
attending to details, etc. is an indispensable part of any definition of intelligence and
this thesis pushes the state of the art for incorporating these features in an intelligent
autonomous agent.
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Appendix

11.1 Results from Chapter 3

11.1.1 Proofs from section 3.1

Theorem 3 Let M⇢ = hS, A⇢,⌦, T⇢, O⇢,�⇢, b0, hi be a ⇢POMDP, and ⇡⇢ an arbi-
trary policy for M⇢. Furthermore let MIR = REDUCE-POMDP-⇢-IR(M⇢) and ⇡IR =
REDUCE-POLICY-⇢-IR(⇡⇢). Then, for all b,

V IR
t (b) = V ⇢

t (b), (11.1)

where

V IR
t = max

ap

X

s

b(s)RIR(s, ap) +
X

z

Pr(z|b,⇡n
IR(b))V

IR
t�1(b

⇡n
IR(b)

z ), (11.2)

is the t-step value function of policy ⇡IR in POMDP-IR MIR and

V ⇢
t = [⇢(b) +

X

z

Pr(z|b,⇡⇢(b))V
⇢
t�1(b

⇡⇢(b)
z )], (11.3)

is the t-step value function of policy ⇡⇢ in ⇢POMDP M⇢.

Proof. By induction on t. To prove the base case, we observe that, from the definition of
⇢(b),

V ⇢
0 (b) = ⇢(b) = max

↵
ap
⇢ 2�⇢

X

s

b(s)↵ap
⇢ (s). (11.4)

Since Ap,IR in MIR has a prediction action corresponding to each ↵ap
⇢ , and ⇡IR is
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such that it takes the prediction action that maximizes the immediate belief based reward.
Then,

V IR
0 (b) = max

ap2Ap,IR

X

s

b(s)R(s, ap) (11.5)

(Since there is a prediction action corresponding to every alpha, this implies,)

= max
ap2Ap,IR

X

s

b(s)↵ap
⇢ (s) = max

↵
ap
⇢ 2�⇢

X

s

b(s)↵ap
⇢ (s) (11.6)

= V ⇢
0 (b) (11.7)

For the inductive step, we assume that V IR
t�1(b) = V ⇢

t�1(b) and must show that
V IR

t (b) = V ⇢
t (b). Starting with V IR

t (b),

V IR
t (b) =max

ap

X

s

b(s)R(s, ap) +
X

z

Pr(z|b,⇡n
IR(b))V

IR
t�1(b

⇡n
IR(b)

z ), (11.8)

where ⇡n
IR(b) denotes the normal action of the tuple specified by ⇡IR(b) and:

Pr(z|b,⇡n
IR(b)) =

X

s

X

s00

OIR(s
00,⇡n

IR(b), z)TIR(s,⇡
n
IR(b), s

00)b(s). (11.9)

Using the reduction procedure, we know, for all s, s00, z,

⇡⇢(b) = ⇡n
IR(b), (11.10)

O⇢(s
00,⇡⇢(b), z) = OIR(s

00,⇡n
IR(b), z) (11.11)

T⇢(s,⇡⇢(b), s
00) = TIR(s,⇡

n
IR(b), s

00) (11.12)

Substituting these in (11.9)

Pr(z|b,⇡n
IR(b)) =

X

s

X

s00

O⇢(s
00,⇡⇢(b), z)T⇢(s,⇡⇢(b), s

00)b(s) = Pr(z|b,⇡⇢(b)).

(11.13)

Similarly, for the belief update equation,

b
⇡n
IR(b)

z (s0) =
OIR(s0,⇡n

IR(b), z)

Pr(z|⇡n
IR(b), b)

X

s

b(s)TIR(s,⇡
n
IR(b), s

0) 8 s0

=
O⇢(s0,⇡⇢(b), z)

Pr(z|⇡⇢(b), b)

X

s

b(s)T⇢(s,⇡⇢(b), s
0) 8 s0

= b
⇡⇢(b)
z (s0) 8 s0.

(11.14)
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Substituting the above result in (11.8) yields:

V IR
t (b) = max

ap

X

s

b(s)R(s, ap) +
X

z

Pr(z|b,⇡⇢(b))V
IR
t�1(b

⇡⇢(b)
z ). (11.15)

Since the inductive assumption tells us that V IR
t�1(b) = V ⇢

t�1(b) and (11.7) and (11.4)
show that ⇢(b) = maxap

P
s b(s)R(s, ap):

V IR
t (b) =[⇢(b) +

X

z

Pr(z|b,⇡⇢(b))V
⇢
t�1(b

⇡⇢(b)
z )]

=V ⇢
t (b).

(11.16)

Theorem 4 Let MIR = hS, AIR,⌦, TIR, OIR, RIR, b0, hi be a POMDP-IR and
⇡IR(b) = h⇡n

IR(b),⇡
p
IR(b)i = han, api a policy for MIR, such that ⇡p

IR(b) = ap =

argmaxa0
p

P
s b(s)R(s, a0

p). Furthermore let M⇢ = REDUCE-POMDP-IR-⇢(MIR) and
⇡⇢ = REDUCE-POLICY-IR-⇢(⇡IR). Then, for all b,

V ⇢
t (b) = V IR

t (b), (11.17)

where

V IR
t (b) = max

ap

X

s

b(s)RIR(s, ap) +
X

z

Pr(z|b,⇡n
IR(b))V

IR
t�1(b

⇡n
IR(b)

z ), (11.18)

is the value of following ⇡IR in MIR and

V ⇢
t (b) = [⇢(b) +

X

z

Pr(z|b,⇡⇢(b))V
⇢
t�1(b

⇡⇢(b)
z )], (11.19)

is the value of following ⇡⇢ in M⇢.

Proof. By induction on t. To prove the base case, we observe that, from the definition of
⇢(b),
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V IR
0 (b) = max

ap

X

s

b(s)R(s, ap)

= max
↵

ap
⇢ 2�⇢

X

s

b(s)↵ap
⇢ (s) {since �⇢ is made up of ↵ vectors

such that R(s, ap) = ↵
ap
⇢ (s) for all ap 2 Ap,IR.}

= ⇢(b)

= V ⇢
0 (b)

(11.20)

For the inductive step, we assume that V ⇢
t�1(b) = V IR

t�1(b) and must show that
V ⇢

t (b) = V IR
t (b). Starting with V ⇢

t (b),

V ⇢
t (b) = ⇢(b) +

X

z

Pr(z|b,⇡⇢(b))V
⇢
t�1(b

⇡⇢(b)
z ), (11.21)

and:

Pr(z|b,⇡⇢(b)) =
X

s

X

s00

O⇢(s
00,⇡⇢(b), z)T⇢(s,⇡⇢(b), s

00)b(s). (11.22)

Using the reduction procedure we know, for all s, s00, z:

⇡n
IR(b) = ⇡⇢(b), (11.23)

OIR(s
00,⇡n

IR(b), z) = O⇢(s
00,⇡⇢(b), z) (11.24)

TIR(s,⇡
n
IR(b), s

00) = T⇢(s,⇡⇢(b), s
00) (11.25)

Substituting these in (11.21)

Pr(z|b,⇡⇢(b)) =
X

s

X

s00

OIR(s
00,⇡n

IR(b), z)TIR(s,⇡
n
IR(b), s

00)b(s) = Pr(z|b,⇡n
IR(b)).

(11.26)
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Similarly, for the belief update equation,

b
⇡⇢(b)
z (s0) =

O⇢(s0,⇡⇢(b), z)

Pr(z|⇡⇢(b), b)

X

s

b(s)T⇢(s,⇡⇢(b), s
0) 8 s0

=
OIR(s0,⇡n

IR(b), z)

Pr(z|⇡n
IR(b), b)

X

s

b(s)TIR(s,⇡
n
IR(b), s

0) 8 s0

= b
⇡n
IR(b)

z (s0) 8 s0.

(11.27)

Substituting the above result in (11.21) yields:

V ⇢
t (b) = ⇢(b) +

X

z

Pr(z|b,⇡n
IR(b))V

⇢
t�1(b

⇡n
IR(b)

z ). (11.28)

Since the inductive assumption tells us that V ⇢
t�1(b) = V IR

t�1(b) and (11.20) shows
that maxap

P
s b(s)R(s, ap) = ⇢(b):

V ⇢
t (b) = [max

ap

X

s

b(s)R(s, ap) +
X

z

Pr(z|b,⇡n
IR(b))V

IR
t�1(b

⇡n
IR(b)

z )]

=V IR
t (b).

(11.29)

11.2 Results from Chapter 4

11.2.1 Proofs from subsection 4.1.2

Lemma 2 Let M = hS, A+,⌦, T, O, ⇢, b0, hi be an active perception POMDP. Let ⇡ be
a policy that maps beliefs to actions in A

+, ⇡(b) = A, where A
+ = {A ✓ X : |A|  k}

and X = {1, 2, . . . , n} denotes the set of n sensors. Let bt and A
t denote the belief

and action at time step t. If the immediate belief-based reward ⇢ in M is defined as
the negative belief entropy, that is, ⇢(b) = �Hb(s) then the expected reward at time
step j(< t) as a consequence of taking action A

t in belief bt and following policy ⇡ in
between the time interval t to j equals the negative discounted conditional entropy of bj

over sj given zt:j:

G⇡
j (b

t, At) =
X

zt:j
Pr(zt:j

|bt, At,⇡)(�Hbj (s
j)) = �Hbj (s

j
|zt:j). (11.30)

Here bj is the belief at time step j, sj denote the hidden state at time step j and zt:j

denote the sequence of observations that can be obtained in between the time interval

163



11. Appendix

from t to j time step.

Proof. To prove the above lemma, we take help of some additional notations and defini-
tions, first we must elaborate on the definition of bj :

bj(sj) , Pr(sj
|bt, At,⇡, zt:j) =

Pr(zt:j , sj
|bt, At,⇡)

Pr(zt:j |bt, At,⇡)
. (11.31)

For notational convenience, we also write this as:

bj(sj) ,
Pr⇡bt,At(zt:j , sj)

Pr⇡bt,At(zt:j)
. (11.32)

The entropy of bj is thus (using the definition given by (2.16)):

Hbj (s
j) = �

X

sj

Pr⇡bt,At(zt:j , sj)

Pr⇡bt,At(zt:j)
log(

Pr⇡bt,At(zt:j , sj)

Pr⇡bt,At(zt:j)
), (11.33)

and the conditional entropy of bj over sj given zt:j is (using definition given by (4.33)):

HAt

bj (sj
|zt:j) = �

X

sj

X

zt:j

⇡
Pr

bt,At
(zt:j , sj) log(

Pr⇡bt,At(zt:j , sj)

Pr⇡bt,At(zt:j)
). (11.34)

Starting with the definition of G⇡
j (b

t, At) (using (4.31)),

G⇡
j (b

t, At) = (�
X

zt:j

⇡
Pr

bt,At
(zt:j)Hbj (s

j)) (11.35)

By definition of entropy, as in (11.33) (11.36)

=
X

zt:j

⇡
Pr

bt,At
(zt:j)

"
X

sj

Pr⇡bt,At(zt:j , sj)

Pr⇡bt,At(zt:j)
log(

Pr⇡bt,At(zt:j , sj)

Pr⇡bt,At(zt:j)
)

#
(11.37)

=
X

zt:j

"
X

sj

⇡
Pr

bt,At
(zt:j , sj) log(

Pr⇡bt,At(zt:j , sj)

Pr⇡bt,At(zt:j)
)

#
(11.38)

By definition of conditional entropy, as in (11.34) (11.39)

= (�HAt

bj (sj
|zt:j)). (11.40)

Eq. (11.38) follows from (11.37) because Pr⇡bt,At(zt:j) is independent of sj and can
be moved out of the summation over sj .

Lemma 3 Let Z = {z1, z2, . . . zn} be the set of all observation features about a hidden
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variable s. If Z is conditionally independent given s then�H(s|Z) is submodular in Z ,
i.e., for any two observations set ZM , ZN ✓ Z ,

H(s|ZM [ ZN ) + H(s|ZM \ ZN ) � H(s|ZM ) + H(s|ZN ). (11.41)

Proof. By Bayes’ rule for conditional entropy :

H(s|ZM [ ZN ) = H(ZM [ ZN |s) + H(s)�H(ZM [ ZN ). (11.42)

Eq. (11.42) is true because:

By chain rule of entropy [Cover and Thomas, 1991]: (11.43)

H(s, {ZM [ ZN}) = H(s|{ZM [ ZN}) + H({ZM [ ZN}) (11.44)

= H({ZM [ ZN}|s) + H(s) (11.45)

Using (11.44) and (11.45), (11.42) can be obtained. ZM and ZN are subsets of Z ,

thus, ZM [ ZN can only contain observation features zi that are in Z . Thus, if Z is
conditionally indepdent given s (which we have assumed), then ZM[ZN is conditionally
independent given s.

Since ZM [ ZN is conditionally independent given s and the entropy of two inde-
pendent variables is just the sum of their individual entropies, we get H(ZM [ZN |s) =

H(ZM |s) + H(ZN |s) 1

1 A short and simple proof for this is:

H(ZM [ ZN |s) =
X

zi2ZM ,zj2ZN

Pr(zi, zj |s) log(Pr(zi, zj |s)) (11.46)

Using conditional independence, (11.47)

=
X

zi2ZM ,zj2ZN

Pr(zi, zj |s) log(Pr(zi|s) Pr(zj |s)) (11.48)

=
X

zi2ZM ,zj2ZN

Pr(zi|s) Pr(zj |s) log(Pr(zi|s)) +
X

zi2ZM ,zj2ZN

Pr(zi|s) Pr(zj |s) log(Pr(zj |s))

(11.49)

=
X

zi2ZM

Pr(zi, |s)1 log(Pr(zi|s)) +
X

zj2ZN

1Pr(zj |s) log(Pr(zj |s)) (11.50)

= H(ZM |s) +H(ZN |s). (11.51)
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Substituting this in (11.42), we get:

H(s|ZM [ ZN ) = H(ZM |s) + H(ZN |s) + H(s)�H(ZM [ ZN ). (11.52)

Using Bayes’ rule for conditional entropy:

H(s|ZM \ ZN ) = H(ZM \ ZN |s) + H(s)�H(ZM \ ZN ). (11.53)

Adding (11.52) and (11.53):

H(s|ZM \ ZN ) + H(s|ZM [ ZN ) = H(ZM |s) + H(ZN |s)

+ H(ZM \ ZN |s) + 2H(s)

�H(ZM [ ZN )�H(ZM \ ZN ).

(11.54)

Using Bayes’ rule for conditional entropy:

H(ZM |s) = H(s|ZM ) + H(ZM )�H(s), and

H(ZN |s) = H(s|ZN ) + H(ZN )�H(s)
(11.55)

Substituting H(ZM |s) and H(ZN |s) in (11.54):

H(s|ZM \ ZN ) + H(s|ZM [ ZN ) = H(s|ZM ) + H(s|ZN )

+ H(ZM \ ZN |s) + [H(ZM )

+ H(ZN )�H(ZM [ ZN )�H(ZM \ ZN )].

Since entropy is submodular [H(ZM ) +H(ZN )�H(ZM [ZN )�H(ZM \ZN )]

is positive and since entropy is positive, H(ZM \ ZN |s) is positive [Fujishige, 1978].
Thus,

H(s|ZM \ ZN ) + H(s|ZM [ ZN ) = H(s|ZM ) + H(s|ZN )

+ a positive term.

This implies H(s|ZM [ ZN ) + H(s|ZM \ ZN ) � H(s|ZM ) + H(s|ZN ).

Lemma 4 Let M = hS, A+,⌦, T, O, ⇢, b0, hi be an active perception POMDP. Let ⇡ be
a policy that maps beliefs to actions in A

+, ⇡(b) = A, where A
+ = {A ✓ X : |A|  k}

and X = {1, 2, . . . , n} denotes the set of n sensors. Let bt and A
t denote the belief

and action at time step t. Let Z
t:j = {zt

1, z
t
2, . . . , z

t
n, zt�1

1 , zt�1
2 , . . . , zj

n} be the set of
observation features that can be obtained between the time interval from t to j. If the
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immediate belief-based reward ⇢ in M is defined as the negative belief entropy, that is,
⇢(b) = �Hb(s), and if Z

t:j is conditionally independent given sj , then G⇡
j (b

t, At) =

�Hbj (s
j
|Z

t:j) is submodular in A
t
8 ⇡. Here bj is the belief at time step j, sj denote

the hidden state at time step j.

Proof. Let A
t
M and A

t
N be two actions and Z

t:j
M and Z

t:j
N the observations they induce.

Then, from Lemma 2,

G⇡
j (b

t, At
M ) = (�Hbj (s

j
|Z

t:j
M )). (11.56)

From Lemma 3,

Hbj (s
j
|Z

t:j
M [ Z

t:j
N ) + Hbj (s

j
|Z

t:j
M \ Z

t:j
N ) � Hbj (s

j
|Z

t:j
M ) + Hbj (s

j
|Z

t:j
N )

Multiplying by� 1 on both sides and using definition of G

G⇡
j (b

t, At
M [A

t
N ) + G⇡

j (b
t, At

N \A
t
M )  G⇡

j (b
t, At

M ) + G⇡
j (b

t, At
N ).

Lemma 5 Let M = hS, A+,⌦, T, O, ⇢, b0, hi be an active perception POMDP. Let
⇡ be a policy that maps beliefs to actions in A

+, ⇡(b) = A, where A
+ = {A ✓

X : |A|  k} and X = {1, 2, . . . , n} denotes the set of n sensors. Let Q⇡
t (b, A) =

⇢(b) +
P

z2⌦ Pr(z|b, A)V ⇡
t�1(b

A
z ) be the t-step action value function of policy ⇡. If

V ⇡
t�1(b

0) is a convex function of b0, then Q⇡
t (b, A) is monotone in A, i.e., for all b and

AM ✓ AN (AM , AN 2 A
+), Q⇡

t (b, AM )  Q⇡
t (b, AN ).

Proof. Since ⇢(b) is independent of AM , we need only to show that the second term is
monotone in A. Let AP = AN \ AM and

F⇡
b (AN ) = EZN [V ⇡

t�1(b
AN
ZN

)|b, AN ]. (11.57)

Since AN = {AM [ AP }, we start with following set of inequalities and provide the
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explanation below:

F⇡
b (AN ) = E{ZM ,ZP }[V

⇡
t�1(b

{AM ,AP }
{ZM ,ZP } )|b, {AM , AP }] (11.58)

=
X

ZM ,ZP

Pr(ZM , ZP |b, AM , AP )[V
⇡
t�1(b

{AM ,AP }
{ZM ,ZP } )] (11.59)

=
X

ZM

X

ZP

Pr(ZP |ZM , b, AM , AP ) Pr(ZM |b, AM )[V ⇡
t�1(b

{AM ,AP }
{ZM ,ZP } )]

(11.60)

=
X

ZM

Pr(ZM |b, AM )
X

ZP

Pr(ZP |ZM , b, AM , AP )[V
⇡
t�1(b

{AM ,AP }
{ZM ,ZP } )]

(11.61)

�

X

ZM

Pr(ZM |b, AM )[V ⇡
t�1

⇣X

ZP

Pr(ZP |ZM , b, AM , AP )b
{AM ,AP }
{ZM ,ZP }

⌘
]

(11.62)

=
X

ZM

Pr(ZM |b, AM )[V ⇡
t�1(b

AM
ZM

)] (11.63)

= F⇡
b (AM ) (11.64)

Eq. (11.58) and (11.59) are simple re-writing of same terms. Eq. (11.60) fol-
lows from rule of conditional probability, that, Pr(A [ B) = Pr(A|B) Pr(B), eq.
(11.62) follows from pulling the Pr(ZM |b, AM ) outside the summation over ZP since
Pr(ZM |b, AM ) is independent of ZP . Eq. (11.60) follows from Jensen’s inequality since
V ⇡

t�1 is convex in b (this is belief at time step t� 1), that says that for a convex function
 (X) of X , E[ (X)] �  (E(X)). Eq. (11.62) follows from the observation that the
expected posterior belief after observing Z

P is the same as the prior belief bAM
ZM

2.
Consequently, we have:

⇢(b) + F⇡
b (AN ) � ⇢(b) + F⇡

b (AM )

Q⇡
t (b, AN ) � Q⇡

t (b, AM ).
(11.65)

11.2.2 Proofs from section 4.2

Lemma 7 Let M = hS, M,⌦, T, O, R, b0, hi be an active perception POMDP, where
M = (V, I) is a matroid. Let ⇡ be a policy that maps beliefs b to actions a in I ,

2
b
{AM ,AP }
{ZM ,ZP } (s

0) is Pr(s0|ZM ,ZP , b,AM ,AP ). Thus,
P

ZP
Pr(ZP |ZM , b,AM ,AN )b

{AM ,AP }
{ZM ,ZP } (s

0) =
P

ZP
Pr(ZP |ZM , b,AM ,AN ) Pr(s0|ZM ,ZP , b,AM ,AP ) = Pr(s0|ZM , b,AM ) = b

AM
ZM

(s0).
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⇡(b) = a. Let Q⇡
t (b, a) be the t-step value function for following policy ⇡, that is,

Q⇡
t (b, a) = ⇢(b) +

P
z2⌦ Pr(z|b, a)V ⇡

t�1(b
a
z). If for all b, ⇢(b) � 0,

V ⇡
t (b) � (1� ✏)V ⇤

t (b), (11.66)

and Q⇡
t (b, a) is non-negative, monotone, and submodular then, for ✏ 2 [0, 1],

(BMV ⇡
t )(b) � (

1

2
)(1� ✏)(BMV ⇤

t )(b). (11.67)

Proof. Starting from (11.66) and, for a given a, on both sides taking the expectation over
z, and adding ⇢(b) (since ⇢(b) � 0 and ✏  1):

⇢(b) + Ez|b,a[V
⇡
t (baz )] �

1

2
(⇢(b) + Ez|b,a[V

⇤
t (b

a
z )]).

From the definition of Q⇡
t (2.5), we thus have:

Q⇡
t+1(b, a) � (1� ✏)Q⇤

t+1(b, a) 8a. (11.68)

From Theorem 10, we know

Q⇡
t+1(b, a

G
⇡ ) �

1

2
Q⇡

t+1(b, a
⇤
⇡), (11.69)

where aG
⇡ = greedy-argmaxM(Q⇡

t+1(b, ·), V, I, K) and a⇤⇡ = argmaxa2I Q⇡
t+1(b, a).

Since Q⇡
t+1(b, a

⇤
⇡) � Q⇡

t+1(b, a) for any a 2 I ,

Q⇡
t+1(b, a

G
⇡ ) �

1

2
Q⇡

t+1(b, a
G
⇤ ), (11.70)

where aG
⇤ = greedy-argmaxM(Q⇤

t (b, ·), V, I, K). Finally, (11.68) implies that
Q⇡

t+1(b, a
G
⇤ ) � (1� ✏)Q⇤

t+1(b, a
G
⇤ ), so:

Q⇡
t+1(b, a

G
⇡ ) �

1

2
(1� ✏)Q⇤

t+1(b, a
G
⇤ )

(BMV ⇡
t )(b) �

1

2
(1� ✏)(BMV ⇤

t )(b).
(11.71)

Theorem 11 Let M = hS, M,⌦, T, O, R, b0, hi be an active perception POMDP where
M is a matroid. Let ⇡ be a policy that maps beliefs b to actions a in I , ⇡(b) = a. Let
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11. Appendix

Q⇡
t (b, a) be the t-step value function for following policy ⇡, that is, Q⇡

t (b, a) = ⇢(b) +
P

z2⌦ Pr(z|b, a)V ⇡
t�1(b

a
z). If for all policies ⇡, Q⇡

t (b, a) is non-negative, monotone and
submodular in a, then for all b,

V G
t (b) � (

1

2
)2tV ⇤

t (b). (11.72)

Proof. By induction on t. The base case, t = 0, holds because V G
0 (b) = ⇢(b) = V ⇤

0 (b).
In the inductive step, for all b, we assume that

V G
t�1(b) � (

1

2
)2t�2V ⇤

t�1(b), (11.73)

and must show that
V G

t (b) � (
1

2
)2tV ⇤

t (b). (11.74)

Applying Lemma 6 with V ⇡
t = V G

t�1 and (1� ✏) = ( 1
2 )

2t�2 to (4.23):

(BMV G
t�1)(b) � (

1

2
)2t�2(

1

2
)(BMV ⇤

t�1)(b)

V G
t (b) � (

1

2
)2t�1(BMV ⇤

t�1)(b).

Now applying Corollary 2 with V ⇡
t�1 = V ⇤

t�1:

V G
t (b) � (

1

2
)2t�1 1

2
(B⇤V ⇤

t�1)(b)

V G
t (b) � (

1

2
)2tV ⇤

t (b).
(11.75)
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Summary

Active perception is the ability of an agent to take actions to reduce its uncertainty
when it is uncertain about the world it is acting in. This thesis tackles the challenge of ac-
tive perception for tracking people in multi-camera networks. Multi-camera systems are
routinely used for security, surveillance and person tracking. A key challenge in the de-
sign of such networks is the efficient allocation of scarce resources such as the bandwidth
required to communicate the collected data to a central server, the CPU cycles required
to process that data, the energy costs of the entire system or the manpower required to
manually monitor all the collected data. Maintaining surveillance is an example of an
active perception task where an agent must select k out of the n available cameras to
allocate the scarce resources to minimize its uncertainty about the state of the world. To
this end, in this thesis we propose and give multiple results and methods for resource
allocation in multi-camera networks, that in principle, reduce the uncertainty about the
about the position of each person in the scene, in turn, enabling an agent to take actions
to track people with a resource constrained multi-camera network.

Specifically, we propose:

• Equivalence of ⇢POMDP and POMDP-IR, two frameworks that allow to express-
ing the reward in a partially observable Markov decision process (POMDP) as a
function of the belief of the agent. This equivalence shows that entropy (uncer-
tainty) of a probability distribution over a hidden variable can be approximated
by giving the agent a choice to make predictions about the hidden state and then
rewarding the agent for making right predictions.

• Greedy PBVI: a new POMDP planning methods that uses greedy maximization to
scale in the large combinatorial action space of an active perception POMDP that
consists of

�n
k

�
subset of cameras.

• Probably approximately correct (PAC) greedy maximization that is an approximate
but computationally cheaper version of greedy maximization that requires access
to only upper and lower confidence bounds on a submodular function to maximize
it.

• PartiMax: a particle filter based algorithm that greatly reduces the computational
cost of tracking people in ultra high resolution images by applying a trained person
detector only to the k most relevant part of an image.

For each of the above mentioned methods, we prove results that guarantee firm error
bounds and establish the conditions for application of those error bounds. To test the em-

171



pirical performance of our methods we conduct experiments on multiple real-life datasets
that show that greedy PBVI and PAC greedy maximization achieve similar performance
as the existing methods but at a fraction of the computational cost. PartiMax when ap-
plied on a real-life tracking problem retains 80% of the original tracking performance
while processing only 10% of the original image while running in real-time.

Finally, we propose deep anticipatory network (DAN) that enable an model-free ap-
proach for active perception, thus, enabling an agent to learn the optimal policy from its
experience given some ground truth data. We show that a DAN agent can potentially be
trained in a supervised fashion to take actions to reduce its uncertainty.

In summary, this thesis pushes the state-of-the-art in active perception for person
tracking, by proposing multiple methods and results applicable in general and especially
for tracking people in resource constrained multi-camera networks.

Yash Satsangi
University of Amsterdam

November 2018



Samenvatting

Actieve perceptie is het vermogen van een agent om acties te ondernemen om zijn
onzekerheid te verminderen wanneer deze onzeker is over de wereld waarin het actief
is. Dit proefschrift gaat in op de uitdaging van actieve perceptie bij het volgen van
mensen in multicameranetwerken. Multicamerasystemen worden routinematig gebruikt
in beveiliging, bewaking en persoonsregistratie. Een belangrijke uitdaging bij het on-
twerp van dergelijke netwerken is de efficiënte toewijzing van schaarse middelen, zoals
de bandwidth die nodig is om de verzamelde gegevens te communiceren naar een cen-
trale server, de CPU cycles die nodig is om die gegevens te verwerken, de energiekosten
van het gehele systeem of de mankracht die nodig is om alle verzamelde gegevens hand-
matig te controleren. Cameratoezicht is een voorbeeld van een actieve perceptie taak,
waarbij een agent k van de n beschikbare camera’s moet selecteren om de schaarse mid-
delen toe te wijzen om de onzekerheid over de toestand van de wereld tot een minimum
te beperken. Hiertoe stellen we in dit proefschrift meerdere resultaten en methoden voor
brontoewijzing in multi-cameranetwerken voor, die in principe de onzekerheid over de
positie van elke persoon in de scene verminderen. Hierdoor, een agent op zijn beurt in
staat is om acties te ondernemen om mensen te traceren met een beperkt netwerk met
meerdere camera’s.

Concreet stellen we voor:

• Gelijkwaardigheid van ⇢POMDP en POMDP-IR, twee raamwerken die toelaten
om de beloning uit te drukken in een partially observable Markov decision process
(POMDP) als een functie van het belief van de agent. Deze equivalentie toont aan
dat de entropie (onzekerheid) van een kansverdeling over een verborgen variabele
kan worden benaderd door de agent een keuze te geven om voorspellingen te doen
over de verborgen status en vervolgens de agent te belonen voor het maken van
juiste voorspellingen.

• Greedy PBVI: een nieuwe POMDP-planningsmethode die de greedy maximization
gebruikt om te schalen in de grote combinatorische actieruimte van een actieve
perceptie-POMDP die bestaat uit

�n
k

�
subset van camera’s.

• Probably approximately correct (PAC) greedy maximization die een benaderende
maar computationeel goedkopere versie van greedy maximization is die toegang
tot alleen upper en lower vertrouwenslimieten op een submodular functie vereist
om deze te maximaliseren.

• PartiMax: een op deeltjesfilter gebaseerd algoritme dat de computationele kosten
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van het volgen van mensen in afbeeldingen met ultrahogeresolutie aanzienlijk ver-
mindert door een detector voor getrainde personen alleen toe te passen op het k

meest relevante deel van een afbeelding.

Voor elk van de bovengenoemde methoden bewijzen we resultaten die foutegrenzen
garanderen en de voorwaarden voor toepassing van die foutgrenzen bepalen. Om de em-
pirische prestaties van onze methoden te testen, voeren we experimenten uit op meerdere
real-life datasets die aantonen dat greedy PBVI en PAC greedy maximization vergelijk-
bare prestaties als de bestaande methoden bereiken, maar tegen een fractie van de com-
puterkosten. PartiMax behoudt bij toepassing op een real-life trackingprobleem 80% van
de oorspronkelijke trackingprestaties, terwijl slechts 10% van het originele beeld wordt
verwerkt en het in realtime wordt uitgevoerd.

Tenslotte stellen we een Deep Anticipatory Network (DAN) voor dat een model-
vrije benadering voor actieve perceptie mogelijk maakt, waardoor een agent het optimale
beleid kan leren aan de hand van zijn ervaring, gegeven enkele ground truth data. We
laten zien dat een DAN-agent potentieel op een gecontroleerde manier getraind kan wor-
den om acties te ondernemen om zijn onzekerheid te verminderen.

Samengevat verbetert dit proefschrift de state-of-the-art in actieve perceptie voor het
volgen van personen door het voorstellen van meerdere methoden en resultaten die van
toepasbaar zijn in het algemeen en in het bijzonder voor het traceren van mensen in
beperkte multicameranetwerken.

Yash Satsangi
University of Amsterdam

November 2018



Hindi Abstract

ए क्टि व परसेप्शन एक एजेंट की अपनी अ नि श्चि तता को कम करने व ्
अपनी जानकारी बढ़ाने हतेु का र्रवाई करने की क्षमता को कहते हैं।यह 
थी सि स बहु-कैमरा नेटव र्क में व्यक्ति यों को टै्रक करने हतेु ए क्टि व परसेप्शन 
की चुनौ ति यों को सम्भो धि त करती ह।ै आजकल सा र्वज नि क स्थान, जैसे 
की शॉ पि गं मॉल या एयरपो र्ट, व्यक्ति यों को टै्रक करने हतेु या सुरक्षा 
व्यवस्था बनाए रखने के लि ए, नि य मि त रूप से बहु-कैमरा नेटव र्क का 
उपयोग करते हैं। इन नेटव र्क के डि ज़ाइन में दु र्लभ संसाधनों का कुशल 
वि तरण करना एक महत्वपू र्ण चुनौती ह,ै जैसे की, एक त्रि त डाटा को सेंट्रल 
स र्वर तक पहुचंने के लि ए बैंड वि ड्थ, या एक त्रि त डाटा को प्रोसेस करने के 
लि ए सेंट्रल स र्वर की क्षमता, या बहु-कैमरा नेटव र्क को चलान ेके लि ए 
पावर/एनजीर्, या एक त्रि त डाटा को मॉ नि टर करने के लि ए श्रम-शक्ति । यह 
दु र्लभ संसाधनों का कुशल वि तरण करने की समस्या एक ए क्टि व परसेप्शन 
की समस्या का उदाहरण ह,ै जि समे एक एजेंट को n उपलब्ध कैमरा में से k 
कैमरा चुनना होता ह ै जि ससे की वह अ धि क से अ धि क जानकारी प्राप्त कर 
सके और अ धि क से अ धि क अ नि श्चि ता घटा सके।इस उदे्दश्य हतेु, यह 
थी सि स वि भि न्न तरीको व प रि णामो को प्रस्तुत करती ह,ै जि ससे की एक 
संशाधन बा धि त बहु कैमरा नेटव र्क, अपने साधनो का इस प्रकार से उपयोग 
कर सके जि ससे की वह सुरक्षा बनाये रखने के लि ए अ धि क से अ धि क 
जानकारी प्राप्त कर सके। 
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Overview of Publications

As required, we provide the list of publications this thesis is based upon along with
the authors and their contributions:

• Yash Satsangi, Shimon Whiteson, Frans A. Oliehoek, and Matthijs T. J. Spaan.
Exploiting Submodular Value Functions for Scaling Up Active Perception. Au-
tonomous Robots, 2017. (Chapter 3 and 4 are based on this.)

• Yash Satsangi, Shimon Whiteson, Frans A. Oliehoek, and Henri Bouma. Real-
Time Resource Allocation for Tracking Systems. In Proceedings of the Thirty-
Third Conference on Uncertainty in Artificial Intelligence (UAI), 2017. (Chapter 6
is based on this.)

• Yash Satsangi, Shimon Whiteson, and Frans A. Oliehoek. Probably Approxi-
mately Correct Greedy Maximization with Efficient Bounds on Information Gain
for Sensor Selection. In Proceedings of the Twenty-Fifth International Joint Con-
ference on Artificial Intelligence (IJCAI), 2016. (Chapter 5 is based on this.)

• Yash Satsangi, Shimon Whiteson, and Frans A. Oliehoek. Exploiting Submodu-
lar Value Functions for Faster Dynamic Sensor Selection. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI), 2015. (Chapter
4 is based on this.)

• Yash Satsangi, Shimon Whiteson, and Frans A. Oliehoek. Probably Approxi-
mately Correct Greedy Maximization. In Proceedings of the Fifteenth Interna-
tional Joint Conference on Autonomous Agents and Multi-Agent Systems (AA-
MAS), 2016. (Chapter 5 is based on this.)

• Yash Satsangi, Shimon Whiteson, and Matthijs T. J. Spaan. An Analysis of
Piecewise-Linear and Convex Value Function for Active Perception POMDPs.
Technical Report IAS-15-01, University of Amsterdam, October 2015. (Chapter
3 is based on this.)

• Yash Satsangi, Shimon Whiteson, and Frans A. Oliehoek. Exploiting Submodular
Value Functions for Faster Dynamic Sensor Selection: Extended Version. Tech-
nical Report IAS-14-02, University of Amsterdam, December 2014. (Chapter 4 is
based on this.)

In all the publications, Yash Satsangi (the first author) performed majority of the re-
search including coming up with the idea, conducting analysis, running experiments and



writing the paper. All co-authors provided useful feedback (via multiple brainstorming
sessions) that led to enhancement of the initial idea. Shimon Whiteson edited all the
papers and provided continuous supervision via many brainstorming sessions. Frans A.
Oliehoek provided supervision and feedback on all publications via many brainstorming
sessions. Matthijs T. J. Spaan and Henri Bouma provided supervision and useful feed-
back on their respective publications. For the sake of completion, note that Chapter 7
and section 4.2 from Chapter 4 are yet to be published in any publication other than this
thesis.
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