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ABSTRACT
Distributed ledger technology benefits society by enabling an ecosys-
tem of decentralised finance. However the pseudo-anonymised na-
ture of transactions has also been an enabler of new routes for
illicit activities ranging from individual scams to organised crimes.
Current solutions for identifying addresses involved in illicit ac-
tivities (illicit addresses) rely on commercial intelligence services,
which are costly due to the intensive investigative efforts required.
We propose Ledgit, an automatic real-time service for diagnosing
illicit addresses on the Bitcoin blockchain. Ledgit is based solely on
publicly available data, and uses an unsupervised clustering method
that combines information from textual reports and the blockchain
graph to assign a risk score that a Bitcoin address is involved in
illicit activities. We verify the system with labeled addresses, show-
ing high performance in identifying illicit addresses. Finally, we
provide an intuitive user interface that provides accessible risk
assessment with graph and report analytics.
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• Applied computing → Secure online transactions; • Software
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1 INTRODUCTION
Since the launch of the Bitcoin blockchain and its whitepaper in
2008 [24], distributed ledger technology (DLT) has grown rapidly.
With this rapid growth there has been growing concern from indi-
vidual and governmental bodies [2, 3, 12, 25] on how to effectively
monitor pseudo-anonymous transactions to tackle organised crimes
such as money laundering, ransomware, illicit cross-border fund
movement [25] as instigated, for example, by terrorist and sanc-
tioned groups and human/drug traffickers.

Subsequently much effort has been devoted to the monitoring of
illicit activity (transactions that may support illegal activities) on
crypto ledgers [18, 31]. With the large growth in the crypto-market,
machine learning based models have became the center of various
blockchain monitoring applications, such as of identity mixing [34],
anomaly detection [14, 20, 21, 30], including various supervised
learning models [17, 36], and some unsupervised models [20, 21, 29].
In 2019, Elliptic released the largest labeled dataset [33] on Bitcoin
transaction activities, which contains a snapshot of a part of the
Bitcoin blockchain transaction graph in time including their transac-
tion features and mined labels (illicit/licit). This database triggered
the development of a large number of supervised models that de-
tect illicit transactions with high performance, utilising transaction
information and their labels [9, 11, 16, 26, 28, 32, 33].

However it was recently shown that the dynamics of the block-
chain plays a crucial role in the embedding of the graph-structured
transactions, and using only historical data is insufficient to train a
good real-time illicit classifier [16]. Therefore real-time and abun-
dant mining of strong labels is necessary to train classifiers on
blockchain ledgers. However mining such strong labels is costly,
and hence there is hardly any automated real-time service that can
leverage machine learning and assess the risk of n given Bitcoin
address as illicit. In fact, the most practical and accessible way to
measure the risk of an address for the end user is to rely on pub-
lic reports from governments and recognised institutes. However
those reports are updated very rarely and in a limited scope. An
alternative is to check addresses in curated web services where pub-
lic users can share votes and incidents [6, 7]. Public reports from
platform such as "Bitcoinabuse.com" [6], are real-time and frequent,
with over 200𝑘 reports with textual description of incidents and
information such as categories, time etc. However it is a challenge
to validate if these are genuine reports, mistakes, spam, fake, or
advertisements.
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Our solution and contributions. This paper proposes Ledgit, an au-
tomated real-time service that lets a user query the risk level of
a Bitcoin address as licit or illicit. Ledgit uses an unsupervised
learning algorithm that clusters addresses with similar reports and
transactions together and computes the risk level of a Bitcoin ad-
dress based on real-time publicly available data, namely the trans-
action graph data and the public reports from Bitcoinabuse.com.
Ledgit uses textual features extracted from the Bitcoinabuse reports
and ‘behavioural’ features from the reports’ meta data. From the
blockchain, Ledgit extracts graph features of the Bitcoin addresses
in the transaction graph. Each Bitcoin address is then represented
by the combination of the textual, behavioural and transaction
graph features, where the textual features capture the topics and
nature of complains, behavioural features capture the statistics such
as number/frequency of reports, number of unique complainers
and transaction graph captures information such as transaction
frequency and volume as well as transactions with other addresses.
Next, 𝑘-means [8, 19] is used to cluster the Bitcoin addresses and
each address is assigned to categories of high, medium and low
risk levels depending on resulting clusters and a carefully designed
decision process. We validate our approach by using a list of known
illicit addresses, labeled by governmental bodies. We use this algo-
rithm and clusters in a back-end to support a user friendly front-end
interface where a user can input a Bitcoin address to check its risk
level and analyse its graph and associated reports. In the rest of the
paper we first demonstrate the user interface service followed by
our clustering algorithm and main results.

2 OVERVIEW OF DEMO SYSTEM
Figure 1a shows the general workflow of the service. The user’s
input is a Bitcoin/wallet address. The user interface (UI) includes a
pop-up query to input a new address. Upon receiving an address,
the service samples amini-graph by crawling the blockchain around
the queried address, then returns a Bitcoin flow directed mini-graph
that captures the transactions and interactions of the given address
and its neighbors, as shown in Figure 1b. This output UI consists of
the following parts: the sampled mini-graph, with the queried ad-
dress as the center, an analytics table that displays the information
extracted from Bitcoinabuse reports, and the individual risk predic-
tions. The output mini-graph shows addresses as nodes and the flow
(transactions) of Bitcoin as directed edges. Dominant addresses and
transactions (large flow of Bitcoins) are proportionally magnified to
expose dominant paths. Additionally, if a certain address (node) in
the graph is listed in any authority/trusted/community lists, there
is an indicator around it mentioning the source of listing. The risk
predictions from Bitcoinabuse reports are displayed as a standalone
analytics table over the canvas. The analytics table also displays the
number of reports associated with an address, the time of the latest
report, the breakup of risks based only on Bitcoinabuse reports
and transaction information. Finally, the displayed mini-graph is
an interactive one, meaning the user can drag, zoom, rotate, for
viewing an information box of each node when the pointer floats
over it. The backend process which carries out the computation
and the risk decision process is discussed next in Section 3.

(a)

(b)

Figure 1: (a) Overall workflow of the web service (b) Snapshot
from the user interface for a query of an address. The output
mini-graph shows addresses as nodes and the flow (transac-
tions) of Bitcoin as edges. Prediction of the risk and analytics
are provided for the central address. Addresses with illicit la-
bels or with reports from Bitcoinabuse are highlighted in red
with attached information on each resource (blue squares).
Dominant paths are magnified. The inset shows a close-up
on the centered address.

3 SYSTEM ARCHITECTURE AND
CLUSTERING ALGORITHM

Figure 2 shows how Ledgit generates the three risk diagnoses for an
address. The system firstly uses 𝑘-means to cluster the constructed
features from the two data sources (report and graph) individually,
and then we assign the associated risk level to each cluster. To
predict the risk for a new address, Ledgit uses 𝑘-nearest neighbors
(KNN) [13] to map the new address to existing clusters and then
follows a decision process to obtain the combined risk.

3.1 Dataset and Feature Building
Ledgit uses two data sources, public reports and transaction graphs.



Ledgit: A Service to Diagnose Illicit Addresses on Blockchain using Multi-modal Unsupervised Learning CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Figure 2: An illustration of the system architecture. In the
clustering phase each data type goes through feature build-
ing, 𝑘-means, and risk assignment. In prediction, each data
type goes through the same feature building, KNN on query,
risk lookup, and a combined decision process.

Public reports. We use the publicly available report dataset from
Bitcoinabuse.com containing all reports until the day of retrieval.
Each report consists of a textual description of the suspicious activ-
ity reported by a victim. Additionally there is abundant metadata
such as the date and time, the country, abuse type, user name etc.
However a significant portion of these reports are simply spam,
advertisement or addresses that are redirected to exchange nodes.
We tackle the challenge of filtering spam in these reports with the
help of insights from the existing literature on unsupervised opin-
ion spam detection [22, 23]. These methods work by identifying
key behavioural features (example: number of reviews) and textual
information (content similarity) that seem to help with unsuper-
vised spam detection [22, 23]. Based on these insights we extract
behavioural features from the metadata such as the latest report
time, average report time, the number of reports and number of
unique reporters on each address. In order to extract textual fea-
tures we make use of the universal sentence encoder (USE) [35] to
encode the textual reports into vector representations. Finally, we
also add features that represent the topic distribution from the col-
lected report texts among some pre-defined topics (such as malware,
website, sextortion, etc). We extracted these topics from each re-
port using the non-negative matrix factorisation (NMF) model [15].
Overall, the text embedding, the topics one-hot vectors and the
behavioural features are concatenated as the feature embedding of
the report data, resulting in a feature vector of length 525, which
followed by a 𝑘-means clustering.

Mini-Graphs. Mini-graphs of the addresses transactions are sam-
pled by crawling on the Bitcoin blockchain [1] itself around a cen-
tered address of interest in real-time by using the blockchain API.
We use a radius of up to 3 hops from the address. In the graphs each
node represents an address and each edge represents a directed
flow of Bitcoin from one address to another. We limit the crawler by
choosing the top 5 highest rates of transaction for each neighbour
node. We construct a set of features: a) structure-related features e.g.
number of edges and nodes, number of addresses at each distance
from center, b) transaction-related features e.g. value of each transac-
tion, node balance, and c) disclosure-related features e.g. number of
nodes at each distance which are disclosed by any report or labeled
list. The feature values are normalised and form a 34-dimensional
feature vector.

Verification dataset. For verification we construct a labeled dataset
with both licit and illicit addresses for verification of the report
and graph clustering. The illicit part is a combination of govern-
ment disclosure [4, 5] and a publicized ransomware dataset [27].
The licit addresses can be extracted from the de-anonymised licit
transactions in the Elliptic dataset [33], based on the rationale that
a licit transaction should only involve licit addresses. Note that
it is impossible to assume the same for illicit transactions, hence
for illicit labels, we rely on the limited publicly trusted resources
mentioned above. For the verification of graph clustering, we sam-
pled 197 illicit and 156 licit transactions. For verification of the
reports clustering and the graph clustering together (Section 4.1
and 4.2), we use 51 illicit and 24 licit addresses that were found to
have reports.

3.2 Clustering and Prediction
For report clustering, we use the entire unlabeled report dataset
with 81, 629 addresses and 266, 028 reports. For graph clustering, we
use the sampled 197 illicit and 156 licit addresses with masked la-
bels, covering 353 addresses and 132, 564 transaction records. Once
we have the feature vectors from public reports and transaction
graphs, we use 𝑘-means clustering to cluster each set of features
independently to prevent the features from one modality dominat-
ing the clustering. We explored various values of 𝑘 in between 0
and 24 and chose the number of clusters as 𝑘=8 and 𝑘=5 for report
and graph clustering since it lead to clearer separation of clusters,
for example, address with longer life span were separated from
once with shorter life span. Further experimentation with other
algorithms [10] are possible but planned as future work since focus
of this paper is to build a real-life system.

4 CLUSTERING RESULTS
Figure 3a shows the distribution of the 8 report clusters and Table
1 provides several average features associated with the clusters.
Initially, the risk levels are assigned by a simple human inspection
of average key features. Then, following verification dataset, the
risk levels for the clusters are further refined to maximise recall of
illicit addresses. A key result of clustering as highlighted by Table 1
is a clear separation between address with high number of reports
(cluster 5: likely to contain genuine reports) and addresses that
have nominal reports against them (likely to be spam). Specifically,
cluster 5 corresponds to addresses with high number of reports
and longer lifetime and is well separated from other clusters with
average number of around 3 reports or less. Notably, clusters with
similar number of reports were in some cases separated depending
on their duration on the website (old or new) or textual information
of reports in those clusters. Hence, we assign cluster 5 and 3 (top
2 number of reports) with a HIGH risk level, and cluster 0 and 4 a
risk of LOW and the rest MEDIUM.

Note that a high number of unique reports does not always relate
to illicit reports. For example, many reports may direct to an ad-
dress that belongs to an exchange platform. This is an example why
the combination with graph information is useful, since exchange
nodes have a unique topology with high graph degree. Figure 3b
visualises the distribution of the 5 graph clusters. For graph clus-
tering (𝑘=5), we assign risk level by observing anomaly of large
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(a) (b)

Figure 3: Feature distribution of each cluster in space, dimen-
sioned reduced by PCA. (a) report clusters; (b) graph clusters.

Table 1: Cluster profiles of reports

cluster avg. no. of re-
ports

avg. duration
(hour)

% of addresses

0 1.42 140.78 5.80
1 3.02 210.42 11.78
2 1.96 98.92 18.24
3 1.83 218.51 9.36
4 1.95 118.97 15.95
5 9.05 544.57 14.85
6 2.42 87.50 9.31
7 2.32 157.72 14.71

Table 2: Cluster profiles of graphs. Transaction (txn) values
are measured in Bitcoin.

cluster avg. txn value avg. txn std % of addresses
0 104.65 880.90 20.11
1 6.51 37.48 24.93
2 37.57 386.94 12.18
3 11.58 77.51 8.22
4 3.30 16.80 34.56

average transaction values (Table 2), and label the two clusters with
excessively high average transaction values, either total, incoming,
or outgoing, as HIGH risk (clusters 0 and 2). The lowest average
value is assigned as LOW (cluster 4).

4.1 Clustering Verification and Decision Process
For verification we sampled a subset of addresses from the verifi-
cation dataset (as discussed in Section 3.1), including 51 illicit and
24 licit addresses. The results of classification are shown in Table 3.
After evaluation of the addresses, we refined the initial cluster risk
labels for report of cluster 2 as it contains 24% of all illicit samples.
Results show that our assignments of risk levels from graphs and
reports overall provides a reasonable assessment of risk that can be
used for monitoring new unknown addresses. We further provide
a combined risk using a decision process based on our analysis.

4.2 Combined Decision Process
Figure 4 illustrates the combined decision process for risk assign-
ment. We simplify the final decision to three categories: HIGH,

Table 3: Evaluation of three clustering methods. All metrics
are calculated under the setup that ‘illicit’ or ‘HIGH risk level’
corresponds to ‘Positive’ class.

report risk graph risk combined risk
accuracy 0.7467 0.8400 0.9067
precision 0.9444 0.9756 0.9400
recall 0.6667 0.7843 0.9215

F1-score 0.7816 0.8695 0.9306

Figure 4: The decision process for combined risk.

LOW, and UNKNOWN. The decision prioritises graph clustering
since it outperforms the reports clustering in detecting illicit ad-
dresses. In the case that the assigned risk by graph clustering is
MEDIUM/LOW, addresses that have reports are assigned firstly by
their report risk. Otherwise, if they do not have reports we clas-
sify their risk by the presence (as a ratio) of trusted disclosures
(e.g. [4, 5, 27]) in the address mini-graph. Finally, the combined
risk shows high F1-score of 93%, a high performance even when
qualitatively compared to supervised non-real-time studies [33].
We thus provide this combined risk in our service in addition to
the individual risks from the report and graph clustering.

5 CONCLUSION
We present Ledgit, an automatic system that can diagnose risk on
an unknown Bitcoin address by only using public information. The
system is the first to mine and combine information from public
reports and blockchain transaction graphs to provide the risk of
illicit activity by Bitcoin addresses. This system extended in the
future to more resources and crypto-assets.
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