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Abstract
Reinforcement learning (RL) is a powerful learning paradigm in which agents can learn to maximize sparse and delayed

reward signals. Although RL has had many impressive successes in complex domains, learning can take hours, days, or

even years of training data. A major challenge of contemporary RL research is to discover how to learn with less data.

Previous work has shown that domain information can be successfully used to shape the reward; by adding additional

reward information, the agent can learn with much less data. Furthermore, if the reward is constructed from a potential

function, the optimal policy is guaranteed to be unaltered. While such potential-based reward shaping (PBRS) holds

promise, it is limited by the need for a well-defined potential function. Ideally, we would like to be able to take arbitrary

advice from a human or other agent and improve performance without affecting the optimal policy. The recently intro-

duced dynamic potential-based advice (DPBA) was proposed to tackle this challenge by predicting the potential function

values as part of the learning process. However, this article demonstrates theoretically and empirically that, while DPBA

can facilitate learning with good advice, it does in fact alter the optimal policy. We further show that when adding the

correction term to ‘‘fix’’ DPBA it no longer shows effective shaping with good advice. We then present a simple method

called policy invariant explicit shaping (PIES) and show theoretically and empirically that PIES can use arbitrary advice,

speed-up learning, and leave the optimal policy unchanged.

Keywords Artificial intelligence � Machine learning � Reinforcement learning � Dynamic potential-based reward shaping

1 Introduction

An RL agent interacts with its surrounding environment by

taking actions and receiving rewards and observations in

return. The aim of the agent is to learn a policy (a mapping

from states to actions) that maximizes a reward signal [26].

In many cases, the reward signal is sparse and delayed so

that learning a good policy can take an excessively long

time. For example, the Open AI Five agent [20] required

180 years worth of game experience per day of training;

similarly, grand-master level StarCraft agent AlphaStar

[27], required 16,000 matches as training data. One

approach to accelerate learning is to add an external source

of advice. The practice of providing an RL agent with

additional rewards to improve learning is called reward

shaping and the additional reward is called the shaping

reward. Shaping was proposed by the psychologist

B. F. Skinner for animal training analogous to a sculptor

shaping clay to form the final statue: a complex task can be
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learned faster by first solving its simpler approxi-

mates [7, 24, 26]. Shaping the reward in RL is meant to

facilitate learning by reinforcing the intermediate beha-

viours related to achieving the main goal. One of the oldest

examples of applying reward shaping is the work by Gul-

lapalli and Barto [7] where a simulated robot hand was

trained to press a key via learning a set of successive

approximations to the original task. However, naively

augmenting the original reward function with shaping can

alter the optimal policy of the RL agent [22]. For example,

Randløv and Alstrøm [22] showed that adding a shaping

reward (that at first seems reasonable) could ‘‘distract’’ the

agent. The authors utilized reward shaping to accelerate

their RL agent trying to learn how to ride a bicycle. When

they provided positive reinforcement for making transi-

tions toward the goal, the agent was misguided to find a

loop as the optimal behaviour, accumulating positive

rewards over and over:

‘‘In our first experiments we rewarded the agent for

driving towards the goal but did not punish it for

driving away from it. Consequently the agent drove

in circles with a radius of 20-50 meters around the

starting point. Such behavior was actually rewarded

by the reinforcement function...’’

Potential-based reward shaping (PBRS) [18, 19, 29, 30] is

a well-known solution that addresses the policy-variance

problem and allows an RL agent to incorporate external

advice without altering its optimal policy by deriving the

shaping reward from a potential function. Given a static

potential function, PBRS defines the shaping reward as the

difference in the potentials of states (or state-action pairs)

when an agent makes a transition from one state to another.

Ng et al. [18] showed that PBRS is guaranteed to be policy

invariant: using PBRS does not alter the optimal policy.

While PBRS achieves policy invariance, it may be dif-

ficult or impossible for a person or agent to express their

advice as a potential-based function. Instead, it would be

preferable to allow the use of more direct or intuitive

advice in the form of an arbitrary function; e.g., giving a

positive/negative feedback for a desirable/undesirable

actions. The ideal reward shaping method then would have

three properties:

1. Be able to use an arbitrary reward function as advice,

2. Keep the optimal policy unchanged in the presence of

the additional advice, and

3. Improve the speed of learning of the RL agent when

the advice is good.1

Harutyunyan et al. [8] attempted to tackle the same prob-

lem by proposing the framework of dynamic potential-

based advice (DPBA), where the idea is to dynamically

learn a potential function from arbitrary advice, which can

then be used to define the shaping reward. Importantly, the

authors claimed that if the potential function is initialized

to zero then DPBA is guaranteed to be policy invariant. We

show in this work that this claim is not true, and hence, the

approach is unfortunately not policy invariant. We confirm

our finding theoretically and empirically. We then propose

a fix to the method by deriving a correction term, and show

that the result is theoretically sound, and empirically pol-

icy-invariant. However, our empirical analysis shows that

the corrected DPBA fails to accelerate the learning of an

RL agent provided with useful advice.

We introduce a simple algorithm, policy invariant

explicit shaping (PIES), and show that PIES can allow for

arbitrary advice, is policy invariant, and can accelerate the

learning of an RL agent. PIES biases the agent’s policy

toward the advice by presenting a new hyper-parameter to

control the amount of advice influence on the agent policy:

having more bias at the start of the learning, when the agent

is the most in need of guidance and over time, gradually

decaying the bias to zero, which ensures policy invariance.

Several experiments confirm that PIES ensures conver-

gence to the optimal policy when the advice is misleading

and also accelerates learning when the advice is useful.

Concretely, this article makes the following

contributions:

1. Identifies an important flaw in a published reward

shaping method.

2. Verifies the flaw exists, empirically and theoretically

by showing that the optimal policy can be altered by

advice.

3. Provides a correction to the method, but empirically

shows that it introduces additional complications,

where good advice no longer improves learning speed.

4. Introduces and verifies a simple approach that achieves

the goals of the original method.

The rest of the paper is outlined as this: first we will pro-

vide some background material about RL and reward

shaping, then we narrow down to DPBA as a specific type

of reward shaping and demonstrate some experimental

results (with good advice) which are central to our con-

tributions, then in the next section we study the problem of

changing the optimal policy with DPBA in depth, and

contrast the (bad advice) findings with the previous section;

lastly we introduce PIES, our alternative that satisfies all of

the goals we have set, and justify how it can overcome the

aforementioned drawbacks of previous methods.
1 We used ‘‘good’’ and ‘‘bad’’ in simple relative terms. We refer to

advice as ‘‘good’’ to simply mean that one would expect that it would

help the speed of learning, e.g., it rewards optimal actions more often

than non-optimal actions.
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2 Background

A Markov Decision Process (MDP) [21], is described by

the tuple hS;A; T ; c;Ri. At each time step, the environment

is in a state s 2 S, the agent takes an action a 2 A, and the

environment transitions to a new state s0 2 S, according to

the transition probabilities Tðs; a; s0Þ ¼ Prðs0js; aÞ. Addi-

tionally, the agent (at each time step) receives a reward for

taking action a in state s according to the reward function

R(s, a). Finally, c is the discount factor, specifying how to

trade off future rewards and current rewards.

A deterministic policy p is a mapping from states to

actions, p : S ! A, that is, for each state, s, pðsÞ returns an
action, a ¼ pðsÞ. The state-action value function Qpðs; aÞ is
defined as the expected sum of discounted rewards the

agent will get if it takes action a in state s and follows the

policy p thereafter.

Qpðs; aÞ ¼ E
X1

k¼0

ckRðstþk; atþkÞ
���st ¼ s; at ¼ a; p

" #
:

The agent aims to find the optimal policy denoted by p�

that maximizes the expected sum of discounted rewards,

and the state-action value function associated with p� is

called the optimal state-action value function, denoted by

Q�ðs; aÞ:

Q�ðs; aÞ ¼ max
p2
QQpðs; aÞ;

where
Q

is the space of all policies.

The action value function for a given policy p satisfies

the Bellman equation:

Qpðs; aÞ ¼ Rðs; aÞ þ cEs0;a0 ½Qpðs0; a0Þ�;

where s0 is the state at the next time step and a0 is the action
the agent takes on the next time step, and this is true for all

policies.

The Bellman equation for the optimal policy p� is called
the Bellman optimality equation:

Q�ðs; aÞ ¼ Rðs; aÞ þ cEs0;a0 ½Q�ðs0; a0Þ�:

Given the optimal value function Q�ðs; aÞ, the agent can

retrieve the optimal policy by acting greedily with respect

to the optimal value function:

p�ðsÞ ¼ argmax
a2A

Q�ðs; aÞ:

The idea behind many reinforcement learning algorithms is

to learn the optimal value function Q� iteratively. For

example, Sarsa [26] learns Q-values with the following

update rule, at each time step t (Q0 can be initialized

arbitrarily):

Qtþ1ðst; atÞ ¼ Qtðst; atÞ þ atdt; ð1Þ

where

dt ¼ Rðst; atÞ þ cQtðstþ1; atþ1Þ � Qtðst; atÞ

is the temporal-difference error (TD-error), st and at
denotes the state and action at time step t, Qt denotes the

estimate of Q� at time step t, and at is the learning rate at

time step t. The TD-error implies that the agent bootstraps

from its current estimation of the value function for com-

puting the target (the temporally successive estimates) in

the error term. If all state-action pairs continue to be visited

(for infinite number of times), with an appropriate learning

rate and a bounded reward, these Q estimates are guaran-

teed to converge to Q� for all s, a, and the policy converges

to p� [26, 28]. Q-learning is another RL approach to esti-

mate Q� with a similar update rule to Sarsa but with a dt:

dt ¼ Rðst; atÞ þ cmax
a

Qtðstþ1; aÞ � Qtðst; atÞ;

where st and at denotes the state and action at time step t,

Qt denotes the estimate of Q� at time step t, and at is the
learning rate at time step t. Q-learning belongs to the

family of off-policy algorithms: the target policy for which

the optimal value function is being learned differs from the

behaviour policy which the agents follows to collect the

learning samples. Here, the target policy is greedy while

the behaviour policy could be some different policy such as

�-greedy (which will be discussed shortly). The backup

diagrams for Sarsa(0) and Q-learning are shown in Fig. 1a,

b respectively, to illustrate the basis of their updates.

While learning iteratively, a good policy should dedicate

some time for exploration to discover new states and

actions as well as some time to exploit the knowledge it

already gained—just like what humans do, e.g., ordering a

new dish in a restaurant or rather choosing from those that

have been already tried, with maximum deliciousness. One

such policy is �-greedy under which the probability of

choosing a random action is � and the greedy action is

1� �.

Fig. 1 The backup diagrams indicating the update rule behind

(a) Sarsa (0) and (b) Q-learning algorithms.
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2.1 Potential-based reward shaping

In cases where the rewards are sparse, reward shaping can

help the agent learn faster by providing an additional

shaping reward F. However, the addition of an arbitrary

reward can alter the optimal policy of a given MDP [22].

Potential-based reward shaping (PBRS) addresses the

problem of adding a shaping reward function F to an

existing MDP reward function R, without changing the

optimal policy by defining F to be the difference in the

potential of the current state s and the next state s0 [18].
Specifically, PBRS restricts the shaping reward to the fol-

lowing form: Fðs; s0Þ :¼ cUðs0Þ � UðsÞ, where U : S ! R

is the potential function. Ng et al. [18] showed that

expressing F as the difference of potentials is the sufficient

condition for the agent to be policy invariant. That is, if the

original MDP hS;A; T; c;Ri is denoted byM and the shaped

MDP hS;A; T ; c;Rþ Fi is denoted by M0 (M0 is same as M

but offers the agent an extra reward F in addition to R) then

the optimal value function of M and M0 for any state-action

pair (s, a) satisfies:

Q�
M0 ðs; aÞ ¼ Q�

Mðs; aÞ � UðsÞ

where U is the bias term. Given Q�
M0 , the optimal policy p�

can simply be obtained by adding the bias term as:

p�ðsÞ ¼ argmax
a2A

Q�
Mðs; aÞ ¼ argmax

a2A
ðQ�

M0 ðs; aÞ þ UðsÞÞ:

Because the bias term only depends on the agent’s state,

the optimal policy of the shaped MDP M0, does not differ
from that of the original MDP M. To also include the

shaping reward on actions, Wiewiora et al. [30] extended

the definition of F to state-action pairs by defining F to be:

Fðs; a; s0; a0Þ :¼ cUðs0; a0Þ � Uðs; aÞ, where U is dependent

on both the state and the action of the agent. Now the bias

term is also dependent on the action taken at state s,

therefore the agent must follow the policy

p�ðsÞ ¼ argmax
a2A

ðQ�
M0 ðs; aÞ þ Uðs; aÞÞ

in order to be policy-invariant.

In the work by Wiewiora [29], potential-based reward

shaping with static potentials (which do not change with

time), proved to be equivalent to initializing the value

function with the potential function, given that the learning

algorithm is using a tabular temporal difference method

with an advantage-based exploration policy and the same

sequence of experience during learning. Thus far, none of

the methods that we discussed admits an arbitrary form of

advice, hence fulfills the ideal shaping goals provided in

Sect. 1. In the next section, we further explain some

approaches with potentials that changes dynamically with

time and through empirical evaluation we show whether

dynamic potentials can be harnessed to achieve our shaping

goals.

3 Dynamic potential-based reward shaping

PBRS, as discussed in Sect. 2.1, is restricted to external

advice that can be expressed in terms of a potential func-

tion. Therefore, it does not satisfy the first of the three

goals; i.e., it cannot admit arbitrary advice. Finding a

potential function U that accurately captures the advice can

be challenging. To allow an expert to specify an arbitrary

function Rexpert and still maintain all the properties of

PBRS one might consider dynamic PBRS. In this section,

we explain dynamic PBRS in details and show experi-

mental results to evaluate based on our three criteria.

Dynamic PBRS uses a potential function Ut that can be

altered online to form the dynamic shaping reward Ft,

where subscript t indicates the time over which F and U
vary. Devlin and Kudenko [5] used dynamic PBRS as

Ftþ1ðs; s0Þ :¼ cUtþ1ðs0Þ � UtðsÞ, where t and t þ 1 are the

times that the agent arrives at states s and s0, respectively.
They derived the same guarantees of policy invariance for

dynamic PBRS as static PBRS. To admit an arbitrary

reward, Harutyunyan et al. [8] suggested learning a

dynamic potential function Ut given the external advice in

the form of an arbitrary bounded function, Rexpert. To do so,

the following method named dynamic potential-based

advice (DPBA) is proposed: define RU :¼ �Rexpert, and

learn a secondary value function U via the following

update rule at each time step:

Utþ1ðs; aÞ :¼ Utðs; aÞ þ bdUt ð2Þ

where Utðs; aÞ is the current estimate of U, b is the U
function’s learning rate, and

dUt :¼ RUðs; aÞ þ cUtðs0; a0Þ � Utðs; aÞ

is the U function’s TD error. All the while, the agent learns

the Q values using Sarsa (i.e., according to Eq. 1). In

addition to the original reward R(s, a) the agent receives a

shaping reward given as:

Ftþ1ðs; a; s0; a0Þ :¼ cUtþ1ðs0; a0Þ � Utðs; aÞ; ð3Þ

that is, the difference between the consecutively updated

values of U.
Harutyunyan et al. [8] suggested that with this form of

reward shaping, Q�
Mðs; aÞ ¼ Q�

M0 ðs; aÞ þ U0ðs; aÞ for every
s and a and therefore to obtain the optimal policy p�, the
agent should be greedy with respect to Q�

M0 ðs; aÞ þ U0ðs; aÞ
by the following rule:
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p�ðsÞ ¼ argmax
a2A

ðQ�
M0 ðs; aÞ þ U0ðs; aÞÞ; ð4Þ

and thus if U0ðs; aÞ is initialized to zero, the above biased

policy in Eq. 4, reduces to the original greedy policy:

p�ðsÞ ¼ argmax
a2A

Q�
M0 ðs; aÞ ¼ argmax

a2A
Q�

Mðs; aÞ:

As this approach is central to our contribution, we give a

more thorough treatment of this work. DPBA was empir-

ically evaluated on two episodic tasks: a 20� 20 grid-

world and a cart-pole problem. In the grid-world experi-

ment as shown in Fig. 2a, the agent starts each episode

from the top left corner until it reaches the goal located at

the bottom right corner, within a maximum of 10,000 steps.

The agent can move along the four cardinal directions and

the state is the agent’s coordinates (x, y). The reward

function is ?1 upon arrival at the goal state and 0 else-

where. The advice, Rexpert, for any state action is:

Rexpertðs; aÞ :¼
þ1 if a is right or down

0 otherwise

�
:

This article replicates the same grid-world environment in

our later experiments.

In the cart-pole task [16] as shown in Fig. 2b, the goal is

to balance a pole on top of a cart as long as possible. The

cart can move along a track and each episode starts in the

middle of the track with the pole upright. There are two

possible actions: applying a force of ?1 or -1 to the cart.

The state consists of a four dimensional continuous vector,

indicating the angle and the angular velocity of the pole,

and the position and the velocity of the cart. An episode

ends when the pole has been balanced for 200 steps or the

pole falls, and the reward function encourages the agent to

balance the pole.

To replicate this experiment2, this article used the

OpenAI Gym [2] implementation (CartPole-v0).We should

note that,there are slight differences between our imple-

mentation of cart-pole and the version used in the DPBA

paper [8], making the results not directly comparable. In

that paper, 1) if the cart attempts to move beyond the ends

of the track, the cart bounces back, and 2) there is a neg-

ative reward if the pole drops and otherwise the reward is

zero. In contrast, in OpenAI Gym, 1) if the cart moves

beyond the track’s boundaries, the episode terminates, and

2) the reward function is ?1 on every step the pole is

balanced and 0 if the pole falls. The advice for this task is

defined as:

Rexpertðs; aÞ :¼ oðs; aÞ � c;

where o : S� A ! f0; 1g is a function that triggers when

the pole direction is aligned with the force applied to the

cart (i.e., when the cart moves in the same direction as the

pole is leaning towards, the agent is rewarded). We set

c ¼ 0:1.

Figure 3 shows the performance of the DPBA method,

compared to a simple Sarsa learner not receiving any

expert advice, in the grid-world and the cart-pole domains.

We used the same set of hyper-parameters as used in [8] for

the grid-world. For learning the cart-pole task, the agent

used a linear function approximation for estimating the

value function via Sarsa(k) and tile-coded feature repre-

sentation [25] with the implementation from the open-

source software (publicly available at Richard Suttons’s

website). The weights for Q and U were initialized uni-

formly random between 0 and 0.001. For tile-coding, we

used 8 tilings, each with 24 tiles (2 for each dimension).

We used a wrapping tile for the angle of the pole for a more

accurate state-representation. With a wrapping tile one can

generalize over a range (e.g. ½0; 2p�) rather than stretching

the tile to infinity, and then wrap-around. k was set to 0.9

and c to 1. For learning rates of Q and U value functions, a
and b, we swept over the values

[0.001, 0.002, 0.01, 0.1, 0.2]. The best parameter values

according to the area under curve (AUC) of each line for

Fig. 3b is reported in Table 1.

These results agree with the prior work, showing that the

agent using the DPBA method learned faster with this good

advice, relative to not using the advice (i.e. the DPBA line

is converging faster to the optimal behaviour). Note that in

the grid-world task the desired behaviour is to reach the

goal as fast as possible. Consequently, for this task the

lower is better in plots (such as the ones in Fig. 3) showing

steps (y-axis) versus episodes (x-axis). In contrast, in cart-

Table 1 Parameters values for

Fig. 3b
Agent a b

Sarsa 0.1 –

DPBA 0.02 0.1

Fig. 2 The two (a) grid-world and (b) cart-pole domains that DPBA

was empericaly evaluated on them.

2 To assist with reproducibility, the implementations of the algo-

rithms used in this article’s experiments are accessible at https://

github.com/panizbehboudian/Useful-Policy-Invariant-Shaping-from-

Arbitrary-Advice.
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pole since the goal is to keep the pole balanced longer, the

higher line which indicates more steps, is better. The

results in Fig. 3 show that DPBA method satisfies criterion

1 (it can use arbitrary rewards) and criterion 3 (good advice

can improve performance). However, as we argue in the

next section, a flaw in the proof of the original paper means

that criterion 2 is not satisfied: the optimal policy can

change, i.e., advice can cause the agent to converge to a

sub-optimal policy. This was not empirically tested in the

original paper and thus this flaw was not noticed.

4 DPBA can affect the optimal policy

The previous section described DPBA, a method that can

incorporate an arbitrary expert’s advice in a reinforcement

learning framework by learning a potential function U
iteratively and concurrently with the shaped state-action

values, QM0 . In this section, we argue that DPBA does not

satisfy policy-invariance property, the second desired

criterion we listed for a successful reward shaping method.

We back our argument with theoretical proof and experi-

mental results, and further we demonstrate how DPBA

behaves with good and bad advice, when we attempt to fix

the flaw.

4.1 Theoretical proof

Harutyunyan et al. [8] claimed that if the initial values of

U, U0, are initialized to zero, then the agent can simply

follow a policy that is greedy with respect to QM0 to

achieve policy invariance. In this section, we show that this

claim is unfortunately not true: initializing U0ðs; aÞ to zero

is not sufficient to guarantee policy invariance.

To prove our claim, we start by defining terms. We will

compare Q-value estimates for a given policy p in two

MDPs, the original MDP denoted by M described by the

tuple hS;A; T ; c;Ri, and the MDP that is shaped by DPBA,

M0, described by the tuple hS;A; T; c;Rþ Ftþ1i, where

Ftþ1ðs; a; s0; a0Þ ¼ cUtþ1ðs0; a0Þ � Utðs; aÞ.
Let R0

tþ1 :¼ Rþ Ftþ1, given a policy p, at any time step

t, Qp
M0 ðs; aÞ can be defined as:

By writing R0 in terms of R and F:

The first term in the above expression (after separating the

expectation) is the value function for the original MDP M

for policy p.

ð5Þ

The second term in Eq. 5 can be expanded based on Eq. 3

as follows:

Fig. 3 The y-axis shows the number of time steps taken to finish each

episode (on x-axis) averaged over (a) 50 and (b) 30 runs. The shaped

agent with DPBA is compared with a Sarsa learner without shaping in

(a) grid-world and (b) cart-pole domains. Shaded areas correspond to

the standard error. Parameter values for figure (b) are reported in

Table 1
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ð6Þ

The two terms inside the infinite summation look quite

similar, motivating us to rewrite one of them by shifting its

summation variable k. This shift will let identical terms be

cancelled out. However, we need to be careful. First, we

rewrite the sums in their limit form. An infinite sum can be

written as:

X1

i¼i0

xi :¼ lim
W!1

XW

i¼i0

xi:

Using this definition, in Eq. 6 we can shift the first term’s

iteration variable as:

ð7Þ

In Eq. 7, if Up
t ðs; aÞ is bounded, then the first term inside

the limit will go to 0 as W approaches infinity. Note that

this term will go to zero only for infinite horizon MDPs. In

practice, it is common to assume a finite horizon MDP with

a terminal state, in such cases, this extra term will remain

and must be removed, for example, by defining the

potential of the terminal state to be zero. The second term

inside the limit does not depend on W and can be pulled

outside the limit:

ð8Þ

Back to Eq. 5, if we apply Eq. 8, we will have:

Qp
M0 ðs; aÞ ¼ Qp

Mðs; aÞ � Utðs; aÞ;

for all p (given that st ¼ s and at ¼ a). Thus, for an agent

to retrieve the optimal policy p�M given Q�
M0 ðs; aÞ, it must

act greedily with respect to Q�
M0 ðs; aÞ þ Utðs; aÞ:

p�MðsÞ ¼ argmax
a2A

Q�
M0 ðs; aÞ þ Utðs; aÞ

� �
: ð9Þ

Equation 9 differs from Eq. 4 (corresponding to Equa-

tion 17 in Harutyunyan et al. [8]) in that the bias term is Ut

and not U0. In other words, at every time step the Q values

of the agent are biased by the current estimate of the

potential function and not by the initial value of the

potential function. The derived relation in Equation 17 of

Harutyunyan et al. [8] is only valid for the first state-action

pair that the agent visits (at t ¼ 0). For the rest of the time

steps, it is not accurate to use the first time step’s bias term

to compensate the shaped value function. Thus, the zero

initialization of U is not a sufficient condition for the agent

to recover the true Q values of the original MDP, and it

cannot be used to retrieve the optimal policy of the original

MDP.

4.2 Empirical validation: unhelpful advice

We empirically validate the result above with a set of

experiments. First, consider a deterministic 2� 2 grid-

world which we refer to it as the toy example, depicted in

Fig. 4. The agent starts each episode from state S and can

move in the four cardinal directions (as depicted in the

figure) until it reaches the goal state G (within a maximum

of 100 steps). Moving towards a wall (indicated by bold

lines), causes no change in the agent’s position. The reward

is 0 on every transition except the one ending in the goal

state, resulting in a reward of ?1 and episode termination.

For advice, we assume that the ‘‘expert’’ rewards the agent

for making transitions away from the goal. Blue arrows

inside the grid in Fig. 4a represent the expert advised state-

transitions. The agent receives a þ1 from the expert by

executing the advised transitions. Because this advice is

encouraging poor behavior, we expect that it would slow

down the learning (rather than accelerate it), but if a

shaping method is policy invariant, the agent should still

eventually converge to the optimal policy.

Fig. 4 The toy example domain with advised transitions indicated by

blue arrows. The expert gives a reward of ?1 if the agent takes an

advised transition and 0 otherwise. The bad expert in (a) tries to keep

the agent away from the goal while the good expert in (b) rewards
transitions towards the goal.
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The learner uses Sarsa(0) to estimate Q values with

c ¼ 0:3. We ran the experiment for both the learner with

corrected DPBA, Eq. 9, and the learner with DPBA, Eq. 4,

using an �-greedy policy. U and Q were initialized to 0 and

� was decayed from 0.1 to 0. For the learning rates of the Q

and U value functions, a and b, we swept over the values

[0.05, 0.1, 0.2, 0.5]. The best values according to the AUC

of the each line are reported in Table 2.

Figure 5 depicts the length of each episode as the

number of steps taken to finish the episode. The Sarsa line

indicates the learning curve for a Sarsa(0) agent without

shaping. Figure 5 shows that DPBA does not converge to

the optimal policy with a bad advice. This figure also

confirms our result that Ut (and not U0 as proposed in

Harutyunyan et al. [8]) is the sufficient correction term to

recover the optimal policy for maximizing the MDP’s

original reward.

Finally, we verify that this is not simply an artefact of

the agent exploiting too soon, and repeat the same exper-

iments for different exploration rates, �. We considered two

more different values for initial exploration rate, �i: 0.3 and

0.5. The corresponding lines in Figure zfig:toyspsexample-

spscorrectedspsbad confirm additional exploration does not

let DPBA obtain the optimal policy. Figure 5 also confirms

that the corrected policy as derived in Eq. 9 converges to

the optimal policy even when the expert advice is bad.

4.3 Empirical validation: helpful advice

The previous section showed that DPBA is not a policy

invariant shaping method since initializing the values of U
to zero is not a sufficient condition for policy invariance.

We showed that DPBA can be corrected by adding the

correct bias term and indeed policy invariant. While the

addition of the correct bias term guarantees policy invari-

ance, we still need to test our third criterion for the desired

reward shaping algorithm — does corrected DPBA accel-

erate the learning of a shaped agent with good expert

advice?

Figure 6 shows the results for repeating the same

experiment as the previous subsection but with the good

expert which is shown in Fig. 4b (i.e., from each state the

expert encourages the agent to move towards the goal).

Here, since the expert is encouraging the agent to move

towards the goal, we expect the shaped agent to learn faster

than the agent that is not receiving a shaping reward.

However, Fig. 6 shows that the corrected agent does not

learn faster with good advice. To our surprise, the advice

actually slowed down the learning, even though the cor-

rected DPBA agent did eventually discover the optimal

policy, as expected.

To explain the corrected DPBA behaviour, one needs to

closely look at how the Q and U estimates are changing and

how they interact with each other. The corrected DPBA

adds the latest value of U for selecting the next action at

each time step, in order to correct the shaped Q value;

however, the U value which has been used earlier to shape

the reward function and updating the Q value might be

different than the latest value. This difference is specially

Fig. 5 The y-axis shows number of time steps taken to finish each

episode with the bad expert. The shaped agent with corrected DPBA

(with different initial � values) is compared with the shaped agent

with DPBA and an unshaped Sarsa agent. Shaded areas correspond to

the standard error averaged over 50 runs (lower is better). Parameter

values used for generating this figure are reported in Table 2

Fig. 6 The y-axis shows number of time steps taken to finish each

episode with the good expert. The shaped agent with corrected DPBA

is compared with the shaped agent with DPBA and an unshaped Sarsa

agent. Shaded areas correspond to the standard error averaged over 50

runs (Lower is better). Parameter values used for generating this

figure are reported in Table 2

Table 2 Parameters values for Figs. 5 and 6

Agent a b

Sarsa 0.05 –

DPBA, good advice 0.2 0.5

DPBA, bad advice 0.2 0.5

corrected DPBA, good advice 0.2 0.1

corrected DPBA, bad advice 0.05 0.2
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more significant in the earlier episodes when dU and dQ

have higher values, before these value functions stabilize.

Let us examine this behaviour through the toy example

experiment by looking at the actual numeric values of U
from the simulation. Assume the case that U and Q has

been initialized to zero and since the advice is always a

positive signal for advised state-action pairs, their U values

have to be negative. With such a U the latest U values are

more negative than the earlier values used for shaping the

reward as shown in Table 3, which in fact discourages the

desired behaviour. Almost after episode 50, U values start

to stabilize (note that the changes in values are negligible

compared to earlier episodes) and that is when the cor-

rected DPBA starts finding the optimal policy and con-

verging to the same point as Sarsa.

While the corrected DPBA guarantees policy invari-

ance, it fails in satisfying the third goal for ideal reward

shaping (i.e., speed up learning of an agent with a helpful

advice).

The main conclusion of this section is that none of the

mentioned reward shaping methods for incorporating

expert advice satisfies the three ideal goals. DPBA [8] can

lead to faster learning if the expert offers good advice but it

is not policy invariant. The corrected DPBA proposed in

this section is provably policy invariant but it can lead to

slower learning even when provided with good advice.

5 Policy invariant explicit shaping

In this section, we introduce the policy invariant explicit

shaping (PIES) algorithm that satisfies all of the goals we

specified in Sect. 1 for reward shaping. PIES is a simple

algorithm that admits arbitrary advice, is policy invariant,

and speeds up the learning of the agent depending on the

expert advice.

Unlike potential-based reward shaping, the main idea

behind PIES is to use the expert advice explicitly without

modifying the original reward function. Not changing the

reward function is the principal feature that both simplifies

PIES and makes analysing how it works easier. The PIES

agent learns the original value function QM as in Eq. 1,

while concurrently learning a secondary value function U
based on expert advice as in Eq. 2. To exploit the arbitrary

advice, we introduce a new hyper-parameter n which

controls that to what extent the agent’s current behaviour is

biased towards the expert’s advice. As mentioned, PIES

does not change the value function Q but rather, only

during action selection to bias the agent’s policy explicitly,

it makes a decision based on a combination of QM and �U
weighted by nt at each time step t. To bias the agent more

in early learning stages, n starts with a higher value and to

enforce the policy to be relied on Q and ensuring policy

invariance, it decays gradually to zero. For example, for a

Sarsa(0) agent equipped with PIES, when the agent wants

to act greedily, it will pick the action that maximizes

Qtðs; aÞ � ntUtðs; aÞ at each time step. The optimal policy

would be:

p�MðsÞ ¼ argmax
a2A

Q�
Mðs; aÞ � ntUtðs; aÞ

� �
;

where nt decays to 0 before the learning terminates. We

add the negation of U to shape the Q values since U is

accumulating the �Rexpert. We kept the U reward function,

RU, the same as DPBA for the sake of consistency. How-

ever, one can easily revert the sign to set RU ¼ Rexpert and

add U to Q to shape the agent with PIES.

Decaying nt to 0 over time removes the effect of shap-

ing, guaranteeing that the agent will converge to the opti-

mal policy, making PIES policy-invariant. More

specifically, the update rule for Qt remains the same, our

policy is a GLIE policy [23], and we do on-policy updates;

therefore, Q converges to Q� under the same conditions for

Sarsa. The speed of decaying n determines how long the

advice will continue to influence the agent’s learned policy.

Choosing the decay speed of n can be related to how

beneficial it is to utilize the advice and can be done in many

different ways. For this article, we only decrease n at the

end of each episode with a linear regime. More specifically,

the value of n during episode e is:

ne :¼
ne�1 �

1

C
ifne�1is not 0

0 otherwise

8
<

: ; n1 ¼ 1; ð10Þ

where C is a constant that determines how fast n will be

decayed; i.e., the greater C is the slower the bias decays.

The complete pseudo-code is shown in Algorithm.

Table 3 Ut values at different episodes from the toy example

experiment with good advice (Fig. 6)

Episodes 10 20 30 40 50 60

Uð1; rightÞ – 0.09 – 0.37 – 0.56 – 0.79 – 0.92 – 0.97

Uð2; upÞ – 0.15 – 0.45 – 0.65 – 0.95 – – 1.14 – 1.22

Uð3; leftÞ – 0.29 – 0.84 – 0.97 – 1.00 – 1.01 – 1.01
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Algorithm 1 PIES with Sarsa(0) updates for Q, Φ

1: Algorithm parameters: step sizes α for Q and β for Φ,
small ε > 0, decay factor ξ

2: Initialize Q(s, a) and Φ(s, a) for all s ∈ S, a ∈ A arbitrarily
except that Q(terminal, .) = 0 , Φ(terminal, .) = 0, ξ = 1

3: for each episode do
4: Initialize S
5: Choose A from S using policy derived from Q + ξΦ

(e.g., ε-greedy)
6: for each step of episode until S is terminal do:
7: Take action A, observe R, Rexpert, S′
8: Choose A′ from S′ using policy derived from Q+ξΦ

(e.g., ε-greedy)
9: if ξt > 0 then
10: Φ(S, A) ← Φ(S, A) + β[Rexpert + γΦ(S′, A′) −

Φ(S, A)]
11: Q(S, A) ← Q(S, A) + α[R + γQ(S′, A′) − Q(S, A)]
12: S ← S′;A ← A′;
13: ξ ← next ξ(ξ)

We first demonstrate empirically that PIES fulfills all

three goals in the toy example. We then show how it

performs against previous methods in the grid-world and

the cart-pole problems (which were originally tested for

DPBA), when provided with good advice. All the domains

specifications are the same as before.

The plot of the agents’ performance in the toy example

in Fig. 7 shows learning curves of the corrected DPBA,

PIES, and the Sarsa learner. Figure 7a is for the bad expert

shown in Fig. 4a and b is for the good expert as in Fig. 4b.

Sarsa (0) was used to estimate state-action values with c ¼
0:3 and an �-greedy policy. U and Q were initialized to 0

and � decayed from 0.1 to 0. For learning rates of Q and U
value functions, a and b, we swept over the values

[0.05, 0.1, 0.2, 0.5]. We show the performance of PIES for

different C values of [5, 10, 20, 50]. It is worth mentioning

that for setting the decaying speed of n (through setting C)

one should consider the quality of the advice; i.e., a smaller

C for a relatively bad advice as it decays the effect of the

adversarial bias faster and a larger C for a good advice to

keep the bias longer. The best values of C (according to the

AUC of each line) along with learning parameters are

reported in Table 4.

As expected, with PIES the agent was able to find the

optimal policy even with the bad expert. In the case of the

beneficial advice, PIES enabled the agent to learn the task

faster. The speed-up, though, is not remarkable in the toy

problem, as the simple learner is also able to learn in very

few episodes. Furthermore, with good advice the sensitivity

of the performance to the decay speed was almost negli-

gible. With bad advice, even with a C value as high as 50

(which is a poor choice and incompatible with the advice),

the PIES agent was able to converge to the optimal policy

soon after the bias effect vanishes which implies robustness

over long-persisting adversarial advice.

Fig. 7 The y-axis shows the number of steps taken to finish each

episode in the toy example. The figures compare PIES with the

corrected DPBA and a Sarsa learner without shaping when the advice

is (a) bad and (b) good. Shaded areas correspond to the standard error

over 50 runs. The parameter values of this figure are reported in

Table 4

Table 4 Parameters values for Fig. 7

Agent a b C

Sarsa 0.05 – –

corrected DPBA, good advice 0.2 0.1 –

corrected DPBA, bad advice 0.05 0.2 –

PIES, good advice 0.05 0.2 50

PIES, bad advice 0.1 0.2 5

Fig. 8 The mountain car domain where a car is trying to reach the

goal marked at top of the right hill
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Figure 9 better demonstrates how PIES boosts the per-

formance of the agent learning with good advice in three

more complex tasks: the grid-world and the cart-pole

domains which were described in Sect. 3 and the mountain

car task. For grid-world and cart-pole tasks similar learning

parameters (those that we do not re-state) inherited their

values from previous experiments. To find the best C,

values of [50, 100, 200, 300] were swept. In the grid-world

task (Fig. 9a) a and b were selected over the values of

[0.05, 0.1, 0.2, 0.5]. In the cart-pole task (Fig. 9b), for

setting the learning rates, the values of

[0.001, 0.002, 0.01, 0.1, 0.2] were swept.

In the mountain car task [17] the agent’s goal is to drive

the car up to the top of a hill at right as shown in Fig. 8. The

challenge is that since the car’s engine is not strong

enough, the car cannot reach the goal with full throttle in

one pass. The solution is to drive back to the left hill to

build up the momentum needed for climbing the steep

slope and then accelerate toward the goal. The car moves

along a one-dimensional track with three possible actions:

accelerate to the left, right or cease any acceleration. The

states are indicated by the car position and velocity at every

time-step. Each episode starts with the car placed at a

random position in between the two hills with zero velocity

and terminates when either the goal is reached or after

10,000 time-steps. The reward is -1 for every step that the

car has not reached the goal location and 0 when the goal is

reached. We used Open-AI MountainCar-v0 implementa-

tion for this experiment [2].

The advice for this task is defined as:

For learning the mountain car task, the agent used a

linear function approximation for estimating the value

function via Sarsa(k) and tile-coded feature representation.

The weights for Q and U were initialized uniformly ran-

dom between 0 and 0.001. For tile-coding, we used 8 til-

ings, each with 82 tiles (8 for each dimension). k was set to

0.9 and c to 1. For learning rates of Q and U value func-

tions, a and b, we swept over the values [0.1, 0.2, 0.5, 0.6].
To find the best C, values of [200, 300, 400, 500] were

swept.

As before, the best parameter values according to the

AUC of each line for Fig. 9a–c are reported in Tables 5, 6,

and 7 respectively. Just like before, for the cart-pole task’s

plot the upper lines indicate better performance whereas for

the grid-world and the mountain car tasks the lower lines

are better.

Fig. 9 The length of each episode as the number of steps in (a) the
grid-world, (b) the cart-pole, and (c) the mountain car domains. The

plot depicts PIES versus the corrected DPBA and a Sarsa learner

without shaping. Shaded areas correspond to the standard error over

(a) 50, (b) 30, and (c) 20 runs. Parameter values for figure (a), (b),
and (c) is reported in Tables 5, 6, and 7, respectively.

Table 5 Parameters values for Fig. 9a

Agent a b C

Sarsa 0.05 - -

corrected DPBA 0.1 0.01 -

PIES 0.05 0.5 100
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PIES correctly used the good advice in all the three

domains and improved learning over the Sarsa learner,

without changing the optimal policy (i.e., PIES approached

the optimal behaviour with a higher speed compared to the

Sarsa learner). PIES performed better than the corrected

DPBA as expected, since the corrected DPBA is not cap-

able of accelerating the learner with good advice. PIES is a

reliable alternative for DPBA when we have an arbitrary

form of advice, regardless of the quality of the advice. As

shown, PIES satisfies all three desired criteria.

6 Related work

PIES is designed to overcome the flaws we exposed with

DBPA and thus tackles the same problem as DPBA. Hence,

PIES could be compared with methods such as

TAMER [9–13] and heuristically accelerated Q-learning

(HAQL) [1]. While TAMER and HAQL have similar

goals, they differ on how advice is incorporated. PIES and

DBPA use external advice by learning a value function

online. TAMER, on the other hand, fits a model to the

advice in a supervised fashion. In the earlier work of

TAMER [9–11], the agent is provided with the interactive

human advice, H, and tries to model it as Ĥ with supervised

learning. Then it acts such that it maximizes the expected

immediate modeled reward, i.e., Ĥ. In the later

TAMER?RL [12] variant, the agent also takes the envi-

ronmental reward into consideration. For combining the

MDP’s reward with the pre-trained human reinforcements

model, Knox and Stone [12] proposed several combination

techniques. In some of these techniques, the agent aug-

ments either the reward or value function with Ĥ which are

the most relevant methods to PIES: the reward

augmentation method augments the reward function with

Ĥ, the value augmentation method augments the value

function, and the action biasing method augments the value

function only during the action selection (similar to adding

U to Q in PIES). In all of the mentioned methods, Ĥ is

weighted by an annealing factor, decaying over time

(which plays a similar role as b in PIES). While

TAMER?RL uses a pre-learned model for the human

reward (which is learned offline), PIES does not need a

prior phase of interacting with the environment for

approximating U. Moreover, Ĥ is estimating the immediate

human advice, ignoring the long-term effect of actions,

while PIES estimates the expected return of the advice. We

should mention that Knox and Stone [12] used PBRS in

one their methods by substituting the static potential

function with maxa Hðs; aÞ. Since this potential function is

static and depends only on states, this method is not rele-

vant to PIES. Interestingly, the results from TAMER?RL

established that action biasing method, which resembles

PIES the most, performed the best amongst all of the

techniques investigated.

Further extending TAMER?RL, Knox and Stone [13]

later provided a more thorough empirical study on the

selected most successful methods and also adjusted the

framework to learn from human advice and the MDP’s

reward simultaneously (unlike the previous work that

learns Ĥ beforehand); however, the framework remains

myopic and limited to immediate reward. Once again, their

empirical results confirmed that action biasing was the best

method (along with the action control method) among the

top-selected methods. They discuss that for incorporating

human advice, it is best to affect the exploration directly

(by changing action selection only) rather than modifying

the reward signal and/or the value function. By incorpo-

rating the advice only for action selection (like the way

action biasing, control sharing, and also PIES do), the agent

learn the accurate values based on its own experience and

can safely achieve the goal.

Similar to TAMER, HAQL biases the policy with a

heuristic function that dynamically changes with time

through an update rule, based on the current estimate of Q

value function. HAQL is identical to TAMER’s action

biasing, if the heuristic function is substituted with a

learned model of the advice. Bianchi et al. [1] also mention

a weight variable (analogous to n) to influence the effect of

the heuristic on the policy. Although PIES uses a similar

approach to bias the policy toward the advice, instead of a

heuristic function, PIES learns a value function from the

advice (independent of the Q value function). The authors

showed that under certain assumptions, HAQL’s Q value

function converges to the optimal value function and thus it

preserves the optimal policy. However, there was no

Table 6 Parameters values for Fig. 9b

Agent a b C

Sarsa 0.1 – –

corrected DPBA 0.02 0.1 –

PIES 0.2 0.5 200

Table 7 Parameters values for Fig. 9c

Agent a b C

Sarsa 0.5 – –

corrected DPBA 0.5 0.5 –

Pies 0.5 0.5 500

1684 Neural Computing and Applications (2022) 34:1673–1686

123



explicit discussion on the role of the heuristic function

weight variable for policy invariance.

While TAMER and HAQL do not restrict the form of

external advice, we argue that incorporating the advice in

form of a value function as PIES does is more general. This

is similar to the case of standard RL, where we work to

maximize total discounted future rewards instead of acting

myopically only based on the immediate reward. Unlike

other methods, PIES emphasizes the role of the decay

factor which makes PIES policy invariant. With PIES, the

agent explicitly reasons about long-term consequences of

following external advice, and that successfully accelerates

learning, particularly in the initial (and most critical) steps.

Another line of work, related to multi-objectivization of

RL by reward shaping [3, 4], uses multiple potential

functions through PBRS. This research is orthogonal to

PIES, but could be combined with it if multiple sources of

advice are present.

Other approaches [6, 7, 14] share some commonality

with PIES and DBPA in that they try to approximate a

good potential function; for example by solving an abstract

MDP and computing its final value function [15], or by

learning a more generalized value function of the MDP

with state aggregation [6]. However, they do not tackle the

challenge of incorporating arbitrary external advice.

7 Conclusion and discussion

This article exposed a flaw in DPBA, a previously pub-

lished algorithm with the aim of shaping the reward

function with an arbitrary advice without changing the

optimal policy. We used empirical and theoretical argu-

ments to show that it is not policy invariant, a key criterion

for reward shaping. Further, we derived the corrected

DPBA algorithm with a corrected bias component. How-

ever, based on our empirical results the corrected algorithm

fails to improve learning when leveraging useful advice

resulting in a failure to satisfy the speed-up criterion. To

overcome these problems, we proposed a simple approach,

called PIES. We show theoretically and empirically that it

guarantees the convergence to the optimal policy for the

original MDP, agnostic to the quality of the arbitrary

advice while it successfully speeds up learning from a good

advice. Therefore, PIES satisfies all of the goals for ideal

shaping.

Central to PIES is the decaying factor, n, with which one
can tune the effect of bias (U) during learning. For the

purpose of this paper, we used a simple speed decay by

setting a hyper-parameter called C, but this might not be

the most efficient approach. Finding a good schedule for n
opens up a new problem for future work. More specifically,

an idea to explore could be learning n as a new parameter

with respect to the quality of the advice or even based on

the effectiveness of advice in certain areas of the state

space. Besides, another path to explore could be applying

PIES in more complex tasks with deep RL and nonlinear

function approximation to demonstrate the method

scalability.
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